GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Modeling from functioning of a grape berry to the whole plant

Modeling from functioning of a grape berry to the whole plant

Abstract

Context and purpose of the study – Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds. It is known that the composition and concentration of chemical compounds dynamically change along berry development and can be affected by genotypes (rootstock and scion), environment (light, temperature and water) and nutrient status (carbon and nitrogen). Moreover, the ongoing climate change is affecting the physiology of grapevine and ultimately wine quality and typicity. Therefore, a better understanding of the mechanisms controlling the accumulation of quality‐related metabolites (both primary and secondary) in grape berry is essential to choose grapevine cultivars and viticultural practices best adapted to a given growth region. Process‐based models can mechanistically integrate various processes involved in fruit growth and composition, and simulate the plant responses to weather and management practices, making them a promising tool to study the response of berry quality to those factors.

Material and methods – Three types of modeling approaches have been applied, including constraint‐ based flux balance analysis, process‐based models, and 3D structure‐functional models. These models were established, calibrated and validated based extensive experimental measurements in grapevines growing under contrast conditions, e.g. nitrogen limitation, modulation of leaf‐to‐fruit ratios, and light conditions. Fruit growth was measured in parallel with metabolite composition, enzyme activities, and whole plant growth processes, such as canopy photosynthesis, and transpiration. Moreover, in silico analysis was conducted to create virtual genotypes or to assess regulatory roles of model parameters.

Results– At cellular scale, we used constraint‐based flux balance analysis model to investigate the flux modifications responsible for biosynthesis of anthocyanins in response to nitrogen limitation. At organ scale, we developed process‐based models for sugar accumulation and anthocyanin composition in grape berries, which allowed us to determine the key processes responsible for these two important quality components. At the whole‐plant scale, a 3D structure‐functional model was developed to simulate water transport, leaf gas exchanges, carbon allocation, and berry growth in various genotype x environment scenarios. In the future, the interactions among the different scales of regulation will be further modelled to offer a model toolkit that allows more accurate predictions of grapevine growth and berry quality elaboration under changing environments and paving a way towards model‐assisted breeding. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Zhanwu DAI (1), Jinliang CHEN (1), Junqi ZHU (2), Michel GENARD (3), Bertrand BEAUVOIT (4), Stefano PONI (5), Sophie COLOMBIE (4), Gregory GAMBETTA (1), Philippe VIVIN (1), Nathalie OLLAT (1), Serge DELROT (1), Yves GIBON (4), Eric GOMES (1)

(1) EGFV, Bordeaux Sci Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, France.
(2) The New Zealand Institute for Plant & Food Research Limited (PFR) Marlborough, Blenheim 7240, New Zealand.
(3) INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, Avignon, France.
(4) INRA, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d’Ornon, France.
(5) Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.

Contact the author

Keywords

Environmental adaptation, Vitis vinifera, berry quality, modeling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.