GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Modeling from functioning of a grape berry to the whole plant

Modeling from functioning of a grape berry to the whole plant

Abstract

Context and purpose of the study – Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds. It is known that the composition and concentration of chemical compounds dynamically change along berry development and can be affected by genotypes (rootstock and scion), environment (light, temperature and water) and nutrient status (carbon and nitrogen). Moreover, the ongoing climate change is affecting the physiology of grapevine and ultimately wine quality and typicity. Therefore, a better understanding of the mechanisms controlling the accumulation of quality‐related metabolites (both primary and secondary) in grape berry is essential to choose grapevine cultivars and viticultural practices best adapted to a given growth region. Process‐based models can mechanistically integrate various processes involved in fruit growth and composition, and simulate the plant responses to weather and management practices, making them a promising tool to study the response of berry quality to those factors.

Material and methods – Three types of modeling approaches have been applied, including constraint‐ based flux balance analysis, process‐based models, and 3D structure‐functional models. These models were established, calibrated and validated based extensive experimental measurements in grapevines growing under contrast conditions, e.g. nitrogen limitation, modulation of leaf‐to‐fruit ratios, and light conditions. Fruit growth was measured in parallel with metabolite composition, enzyme activities, and whole plant growth processes, such as canopy photosynthesis, and transpiration. Moreover, in silico analysis was conducted to create virtual genotypes or to assess regulatory roles of model parameters.

Results– At cellular scale, we used constraint‐based flux balance analysis model to investigate the flux modifications responsible for biosynthesis of anthocyanins in response to nitrogen limitation. At organ scale, we developed process‐based models for sugar accumulation and anthocyanin composition in grape berries, which allowed us to determine the key processes responsible for these two important quality components. At the whole‐plant scale, a 3D structure‐functional model was developed to simulate water transport, leaf gas exchanges, carbon allocation, and berry growth in various genotype x environment scenarios. In the future, the interactions among the different scales of regulation will be further modelled to offer a model toolkit that allows more accurate predictions of grapevine growth and berry quality elaboration under changing environments and paving a way towards model‐assisted breeding. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Zhanwu DAI (1), Jinliang CHEN (1), Junqi ZHU (2), Michel GENARD (3), Bertrand BEAUVOIT (4), Stefano PONI (5), Sophie COLOMBIE (4), Gregory GAMBETTA (1), Philippe VIVIN (1), Nathalie OLLAT (1), Serge DELROT (1), Yves GIBON (4), Eric GOMES (1)

(1) EGFV, Bordeaux Sci Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, France.
(2) The New Zealand Institute for Plant & Food Research Limited (PFR) Marlborough, Blenheim 7240, New Zealand.
(3) INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, Avignon, France.
(4) INRA, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d’Ornon, France.
(5) Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.

Contact the author

Keywords

Environmental adaptation, Vitis vinifera, berry quality, modeling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.