GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hexose efflux from the peeled grape berry

Hexose efflux from the peeled grape berry

Abstract

Context and purpose of the study ‐ After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases, and imported into the cells as glucose and fructose. Alternatively, sucrose can be imported directly from the apoplast and cleaved into glucose and fructose, either in the cytoplasm or vacuoles. In low‐sucrose cultivars, such as Shiraz, glucose and fructose are the dominant sugars in vacuoles. Transport of sugars across the plasma membrane and tonoplast is a complex process, not fully understood. Some of the elements of the sugar transport mechanism may work in a reverse mode. The purpose of this study was to indirectly observe the nature of the transport mechanism by creating conditions inducing hexose efflux from a peeled berry.

Material and methods ‐ Potted plants of cv. Shirazwere grown in a glass‐house (25/16°C), from the end of anthesis onward. The experimental method was derived from the “berry‐cup” technique: a peeled berry, still attached to the plant, was immersed in a MES buffer (2‐(N‐morpholino)ethanesulfonic acid, pH 5,5)) solution that was collected every 30 minutes over a 3 hour period. The experiment was repeated weekly during the ripening phase. Additionally, during the period of intensive sugar accumulation (one to three weeks after veraison), three treatments were imposed: (i) a comparison of sugar unloading from berries detached or attached to the vine, (ii) the addition of the membrane‐ impermeant sulfhydryl‐specific cytotoxin p‐chloromercuribenzenesulfonic (PCMBS, 1mM) to the buffer solution, (iii) exposing the berry to cold (10°C), room temperature (27°C) or warm (40°C) buffer. Collected samples were analyzed for glucose and fructose concentration.

Results ‐ During five weeks of ripening, the rate of hexose (mg of glucose+fructose per g of berry fresh weight) efflux from the peeled berry into the buffer solution increased.There was no difference in efflux rate between attached or detached berries, however efllux rates were temperature dependent. The non‐penetrating enzyme inhibitor, PCMBS, depressed glucose and fructose efflux at the first sampling date, but not two weeks later. The inhibitory effect of PCMBS on fructose efflux was different from glucose, however for both hexoses the reversible nature of PCMBS was confirmed. During ripening, the glucose to fructose ratio within the collected buffer was significantly lower than in the grape juice, and had the opposite trend. These results lead us to the conclusion that the origin of the collected hexoses was vacuolar, and that the hexose efflux mechanism is differently sensitive to PCMBS at the two stages of ripening. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Predrag BOŽOVIĆ (1,3), Suzy ROGIERS (2,3), Alain DELOIRE (4)

(1) University of Novi Sad,Faculty of Agriculture, Serbia
(2) New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
(3)National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia
(4)University of Montpellier, SupAgro, Department of Biology-Ecology, France

Contact the author

Keywords

Grapevine, Sugar transport, Glucose, Fructose, Efflux, PCMBS

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and