GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Hydraulic redistribution and water movement mechanisms in grapevines

Hydraulic redistribution and water movement mechanisms in grapevines

Abstract

Context and purpose of the study – Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution. The objectives of the present study were: (1) to determine the pathways of water transport through the vine form wet soil areas to the dry areas; (2) to determine the potential phloem contribution to this water movement.

Material and methods – This study used deuterium-labeled water (2H2O) as a tracer of water movement. Own-rooted Vitis vinifera L. cv. Merlot grapevines were grown in three-way split root pots. One of the three compartments was irrigated with 2H2O and the other two were left to dry. The trunk in one of the dry compartments was girdled and the other one was left intact to distinguish xylem and phloem water movement. Xylem sap and phloem sap, trunk and root tissue, and soil samples were collected. Water from each sample was extracted via a cryogenic method and analyzed for deuterium enrichment (δ2H).

Results – Following 2H2O supply to the roots, strong deuterium enrichment was found in both xylem and phloem sap collected from petioles. Moreover, the δ2H values were significantly higher in root tissues and soil collected from the dry/intact compartment than in samples from the dry/girdled compartment. These results indicate water moves from roots in wet soil to leaves via the xylem and recycles from leaves to roots in dry soil via the phloem. This xylem-to-phloem redistribution in drought-stressed grapevines keeps roots in dry soil alive, as long as a portion of the root system has access to soil water. The success of irrigation strategies such as partial rootzone drying may be linked to this physiological process.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Nataliya SHCHERBATYUK1, Markus KELLER1*

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, 99350, WA, USA

Contact the author

Keywords

Grapevine, Xylem, Phloe, Drought, Water Redistribution, Hydraulic Lift, Deuterium

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Application of uv-led in wine as an alternative to sulphur dioxide

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011).