GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Hydraulic redistribution and water movement mechanisms in grapevines

Hydraulic redistribution and water movement mechanisms in grapevines

Abstract

Context and purpose of the study – Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution. The objectives of the present study were: (1) to determine the pathways of water transport through the vine form wet soil areas to the dry areas; (2) to determine the potential phloem contribution to this water movement.

Material and methods – This study used deuterium-labeled water (2H2O) as a tracer of water movement. Own-rooted Vitis vinifera L. cv. Merlot grapevines were grown in three-way split root pots. One of the three compartments was irrigated with 2H2O and the other two were left to dry. The trunk in one of the dry compartments was girdled and the other one was left intact to distinguish xylem and phloem water movement. Xylem sap and phloem sap, trunk and root tissue, and soil samples were collected. Water from each sample was extracted via a cryogenic method and analyzed for deuterium enrichment (δ2H).

Results – Following 2H2O supply to the roots, strong deuterium enrichment was found in both xylem and phloem sap collected from petioles. Moreover, the δ2H values were significantly higher in root tissues and soil collected from the dry/intact compartment than in samples from the dry/girdled compartment. These results indicate water moves from roots in wet soil to leaves via the xylem and recycles from leaves to roots in dry soil via the phloem. This xylem-to-phloem redistribution in drought-stressed grapevines keeps roots in dry soil alive, as long as a portion of the root system has access to soil water. The success of irrigation strategies such as partial rootzone drying may be linked to this physiological process.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Nataliya SHCHERBATYUK1, Markus KELLER1*

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, 99350, WA, USA

Contact the author

Keywords

Grapevine, Xylem, Phloe, Drought, Water Redistribution, Hydraulic Lift, Deuterium

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

Méthodologie pour application et valorisation des études de terroir dans les caves cooperatives des Côtes du Rhône (France)

L’appellation d’origine contrôlée “Côtes du Rhône” se caractérise par une très forte implantation du mouvement coopératif. Afin de mieux exploiter le potentiel qualitatif de leurs terroirs, plusieurs coopératives élaborent des “cuvées terroir”, résultat des sélections de vendanges provenant de différents secteurs.