GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Hydraulic redistribution and water movement mechanisms in grapevines

Hydraulic redistribution and water movement mechanisms in grapevines

Abstract

Context and purpose of the study – Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution. The objectives of the present study were: (1) to determine the pathways of water transport through the vine form wet soil areas to the dry areas; (2) to determine the potential phloem contribution to this water movement.

Material and methods – This study used deuterium-labeled water (2H2O) as a tracer of water movement. Own-rooted Vitis vinifera L. cv. Merlot grapevines were grown in three-way split root pots. One of the three compartments was irrigated with 2H2O and the other two were left to dry. The trunk in one of the dry compartments was girdled and the other one was left intact to distinguish xylem and phloem water movement. Xylem sap and phloem sap, trunk and root tissue, and soil samples were collected. Water from each sample was extracted via a cryogenic method and analyzed for deuterium enrichment (δ2H).

Results – Following 2H2O supply to the roots, strong deuterium enrichment was found in both xylem and phloem sap collected from petioles. Moreover, the δ2H values were significantly higher in root tissues and soil collected from the dry/intact compartment than in samples from the dry/girdled compartment. These results indicate water moves from roots in wet soil to leaves via the xylem and recycles from leaves to roots in dry soil via the phloem. This xylem-to-phloem redistribution in drought-stressed grapevines keeps roots in dry soil alive, as long as a portion of the root system has access to soil water. The success of irrigation strategies such as partial rootzone drying may be linked to this physiological process.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Nataliya SHCHERBATYUK1, Markus KELLER1*

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, 99350, WA, USA

Contact the author

Keywords

Grapevine, Xylem, Phloe, Drought, Water Redistribution, Hydraulic Lift, Deuterium

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Selection of beneficial endophytes from Sicilian grapevine germplasm 

The recent expansion of arid areas due to climate change is putting grapevine and the other traditional productions at risk in all Mediterranean countries with a limited availability of fundamental resources such as water. It is possible to improve the resilience of vineyards by developing sustainable agricultural practices based on biological and natural resources such as endophytic microorganisms that colonize inner plant tissues, and which can potentially increase the tolerance to abiotic stresses. A selection of grapevine endophytes was conducted from 2021 to 2023 as part of the PRIMA project PROSIT.

Geology and landscape as determining factors in microfields and development of the different Spanish appellations of origin

Dividing agrarian exploitations into microfields is a problem that influences the modern viticulture in a very important way. The aim of this work is the study of the influence of Geology and Geomorphology in agricultural structures

Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Brazil is historically known at the international wine market as an importer, eventhough in the last decades there was an increase in quantity and quality of the internal production. Nowadays, about 40% of fine wines comsuption of the country are national ones. The main production region is called Serra Gaúcha, where the natural conditions are heterogeneous and viticulture is develloped in small properties, mainly done by the owners family.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.