GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Abstract

Context and purpose of the study – Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Material and methods – Vitis vinifera cv. Cabernet Sauvignon clone 169 was grafted onto 13 rootstock genotypes and planted in 2015 in an experimental plot named GreffAdapt. The rootstocks were: Riparia Gloire de Montpellier, 101-14MGt, 3309C, 420A, SO4, 44-53M, Gravesac, Freedom, Dog Ridge, 41B, Rupestris du Lot, 1103P et 110R. The concentration of the following 13 mineral elements was determined in the petioles at veraison (berry softening, 14/08/2017): Nitrogen, Phosphorus, Potassium, Sulphur, Magnesium, Calcium, Sodium, Bore, Zinc, Manganese, Iron, Cupper and Aluminium. Four petioles were harvested from near the clusters from 2 plants for each block (n = 4 per rootstock genotype) and were dried (in an oven at 60°C until they reached a constant mass). Nitrogen content was determined using a Leco FP-528 instrument (LECO, St. Joseph, MI, USA). Other element contents were determined by digesting the plant sample with nitric acid and hydrochloric acid in a CEM Mars5 microwave digester (CEM, Matthews, NC, USA), elemental concentration was determined by reading the solutions on an ICP-OES MS 730-ES (Varian, Palo Alto, CA, USA). Cane pruning weight was also measured for each vine.

Results – The parentage of rootstocks has a significant effect on petiole mineral composition. Rootstocks with at least one V. riparia parent reduced the concentration of P and increased the concentration of Mg and S in the petiole of Cabernet Sauvignon.

Conclusions – Rootstocks with a V. riparia parent generally confer low scion vigour and we have shown that they also confer low petiole P concentration; this could suggest that P uptake and use is related to rootstock conferred vigour in grapevine. These results will be discussed in the context of previous work we have undertaken to understand the genetic architecture of root growth traits in grapevine. This is the first study to demonstrate a significant link between the genetic origin of a rootstock genotype and its ability to regulation scion P content.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Antoine GAUTIER1, Sarah Jane COOKSON1, Loïc LAGALLE1, Nathalie OLLAT1 and Elisa MARGUERIT*

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Rootstocks, mineral element, phosphorus, grapevine, Vitis spp.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark