GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of ‘pinotage’ defoliation on fruit and wine quality

Influence of ‘pinotage’ defoliation on fruit and wine quality

Abstract

Contex and purpose of this study – Among the different management techniques in Viticulture, which have been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts. The objective of this work was to evaluate the effect of defoliation on the physical-chemical parameters of grapes, musts and wine from the ‘Pinotage’ cultivated in Dom Pedrito, Region of “Campanha”, “RS”, Brazil, in a commercial vineyard planted in the East-West direction .

Material and methods – The study was carried out by the Nucleus of Study, Research and Extension in Enology (NEPE²), of the Bachelor’s Degree in Oenology of UNIPAMPA. The work was carried out in the 2017/18 harvest, with the grapes coming from a commercial vineyard cultivated in a simple vineyard, with a height of 1.0m of the first wire to the ground, 0.5m height of the leaf area, spacing of 1.3m between plants and 3.0m between rows, adding 84 plants. Defoliation was carried out in the color change of the berries, being divided into four treatments, each treatment with 21 plants, where T1 Control (no defoliation of the vine); Defoliation to the North; T3 Defoliation to the South and; T4 Defoil South and North. Microvinifications were done with temperature control and five days of maceration. It was evaluated in the must: total soluble solids, density (g L-1), pH, reducing sugars (g L-1), Gluconic Acid (g L-1) and Potassium Content (mg L-1); in the wine the following variables were evaluated: Alcohol (% v/v), Total Acidity (meq L-1), Density at 20ºC, pH, Volatile Acidity (meq L-1), Glycerol (g L-1), Tartaric Acid (g L-1), Malic Acid (g L-1), Color Intensity and Tint. The data were submitted to the Tukey averages comparison test at 5% probability.

Results – According to the results we can verify that the treatments with defoliation did not influence the quality of the grape must, but the defoliation in the North direction, did decrease the glycerol content of the wine.

Acknowledgments: We would like to thank “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul” (“FAPERGS/Edital 01/2019 – Auxílio para Participação em Eventos – APE”) for the financial support for participation to the author Juan SAAVEDRA DEL AGUILA, in the 21st GIESCO International Meeting (Group of International Experts for Cooperation on Vitivinicultural Systems): 2019, Thessaloniki, Greece. We would like to thanks to the winegrower Mr. Adair Camponogara and the Citropack and Amazon Group.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marcelo de Souza SOARES1, Pedro Paulo PARISOTO1, Nádia Cristiane Alves VIANNA1, Bruna Laís HAMM1, Daniel Pazzini Eckhardt1, Lília Sichmann HEIFFIG-DEL AGUILA2, Juan SAAVEDRA DEL AGUILA1*

1 University Federal of Pampa (UNIPAMPA), Cep 96450-000, Dom Pedrito, RS, Brazil
2 Embrapa Temperate Agriculture, Pelotas, RS, Brazil

Contact the author

Keywords

Vitis vinifera L.,Carbohydrates, Photosynthesis, Viticulture.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.