GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of ‘pinotage’ defoliation on fruit and wine quality

Influence of ‘pinotage’ defoliation on fruit and wine quality

Abstract

Contex and purpose of this study – Among the different management techniques in Viticulture, which have been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts. The objective of this work was to evaluate the effect of defoliation on the physical-chemical parameters of grapes, musts and wine from the ‘Pinotage’ cultivated in Dom Pedrito, Region of “Campanha”, “RS”, Brazil, in a commercial vineyard planted in the East-West direction .

Material and methods – The study was carried out by the Nucleus of Study, Research and Extension in Enology (NEPE²), of the Bachelor’s Degree in Oenology of UNIPAMPA. The work was carried out in the 2017/18 harvest, with the grapes coming from a commercial vineyard cultivated in a simple vineyard, with a height of 1.0m of the first wire to the ground, 0.5m height of the leaf area, spacing of 1.3m between plants and 3.0m between rows, adding 84 plants. Defoliation was carried out in the color change of the berries, being divided into four treatments, each treatment with 21 plants, where T1 Control (no defoliation of the vine); Defoliation to the North; T3 Defoliation to the South and; T4 Defoil South and North. Microvinifications were done with temperature control and five days of maceration. It was evaluated in the must: total soluble solids, density (g L-1), pH, reducing sugars (g L-1), Gluconic Acid (g L-1) and Potassium Content (mg L-1); in the wine the following variables were evaluated: Alcohol (% v/v), Total Acidity (meq L-1), Density at 20ºC, pH, Volatile Acidity (meq L-1), Glycerol (g L-1), Tartaric Acid (g L-1), Malic Acid (g L-1), Color Intensity and Tint. The data were submitted to the Tukey averages comparison test at 5% probability.

Results – According to the results we can verify that the treatments with defoliation did not influence the quality of the grape must, but the defoliation in the North direction, did decrease the glycerol content of the wine.

Acknowledgments: We would like to thank “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul” (“FAPERGS/Edital 01/2019 – Auxílio para Participação em Eventos – APE”) for the financial support for participation to the author Juan SAAVEDRA DEL AGUILA, in the 21st GIESCO International Meeting (Group of International Experts for Cooperation on Vitivinicultural Systems): 2019, Thessaloniki, Greece. We would like to thanks to the winegrower Mr. Adair Camponogara and the Citropack and Amazon Group.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marcelo de Souza SOARES1, Pedro Paulo PARISOTO1, Nádia Cristiane Alves VIANNA1, Bruna Laís HAMM1, Daniel Pazzini Eckhardt1, Lília Sichmann HEIFFIG-DEL AGUILA2, Juan SAAVEDRA DEL AGUILA1*

1 University Federal of Pampa (UNIPAMPA), Cep 96450-000, Dom Pedrito, RS, Brazil
2 Embrapa Temperate Agriculture, Pelotas, RS, Brazil

Contact the author

Keywords

Vitis vinifera L.,Carbohydrates, Photosynthesis, Viticulture.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.