GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of ‘pinotage’ defoliation on fruit and wine quality

Influence of ‘pinotage’ defoliation on fruit and wine quality

Abstract

Contex and purpose of this study – Among the different management techniques in Viticulture, which have been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts. The objective of this work was to evaluate the effect of defoliation on the physical-chemical parameters of grapes, musts and wine from the ‘Pinotage’ cultivated in Dom Pedrito, Region of “Campanha”, “RS”, Brazil, in a commercial vineyard planted in the East-West direction .

Material and methods – The study was carried out by the Nucleus of Study, Research and Extension in Enology (NEPE²), of the Bachelor’s Degree in Oenology of UNIPAMPA. The work was carried out in the 2017/18 harvest, with the grapes coming from a commercial vineyard cultivated in a simple vineyard, with a height of 1.0m of the first wire to the ground, 0.5m height of the leaf area, spacing of 1.3m between plants and 3.0m between rows, adding 84 plants. Defoliation was carried out in the color change of the berries, being divided into four treatments, each treatment with 21 plants, where T1 Control (no defoliation of the vine); Defoliation to the North; T3 Defoliation to the South and; T4 Defoil South and North. Microvinifications were done with temperature control and five days of maceration. It was evaluated in the must: total soluble solids, density (g L-1), pH, reducing sugars (g L-1), Gluconic Acid (g L-1) and Potassium Content (mg L-1); in the wine the following variables were evaluated: Alcohol (% v/v), Total Acidity (meq L-1), Density at 20ºC, pH, Volatile Acidity (meq L-1), Glycerol (g L-1), Tartaric Acid (g L-1), Malic Acid (g L-1), Color Intensity and Tint. The data were submitted to the Tukey averages comparison test at 5% probability.

Results – According to the results we can verify that the treatments with defoliation did not influence the quality of the grape must, but the defoliation in the North direction, did decrease the glycerol content of the wine.

Acknowledgments: We would like to thank “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul” (“FAPERGS/Edital 01/2019 – Auxílio para Participação em Eventos – APE”) for the financial support for participation to the author Juan SAAVEDRA DEL AGUILA, in the 21st GIESCO International Meeting (Group of International Experts for Cooperation on Vitivinicultural Systems): 2019, Thessaloniki, Greece. We would like to thanks to the winegrower Mr. Adair Camponogara and the Citropack and Amazon Group.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marcelo de Souza SOARES1, Pedro Paulo PARISOTO1, Nádia Cristiane Alves VIANNA1, Bruna Laís HAMM1, Daniel Pazzini Eckhardt1, Lília Sichmann HEIFFIG-DEL AGUILA2, Juan SAAVEDRA DEL AGUILA1*

1 University Federal of Pampa (UNIPAMPA), Cep 96450-000, Dom Pedrito, RS, Brazil
2 Embrapa Temperate Agriculture, Pelotas, RS, Brazil

Contact the author

Keywords

Vitis vinifera L.,Carbohydrates, Photosynthesis, Viticulture.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

The influence of native flora on Argentine white terroir cv. Torrontes Riojano

The main objective of this paper is to establish considerable differences between wines from three wine areas or terroir, made with cv Torrontes Riojano.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.