GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Nitrogen partitioning among vine organs as a consequence of cluster thinning

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Abstract

Context and purpose of the study ‐ Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation, partitioning and 15 mobilization from the reserves is studied through foliar application of N isotope‐labelled urea over a two‐year period. The final scope is to optimize fertilizer use efficiency and grape composition. Here are summarized the results from the first year of experimentation.

Material and methods ‐ Two blocs (control and test) of 12 homogeneous potted grapevines each (Vitis vinifera L. Chasselas) were grown under field conditions. During summer 2017, cluster thinning allowed to create a large yield gradient (from 0.5 to 2.5 kg/m2 of soil). Vegetative development—canopy weight, leaf area, photosynthesis activity—and yield parameters —bud fruitfulness, bunch and berry weights, number of bunches and total yield per vine— were measured. All the vines were excavated at harvestand the organs were separated (roots, trunk, canopy, pomace and must), with the aim of monitoring N partitioning in the plant. The test bloc received 20 kg/ha of foliar‐applied 15N labelled urea at veraison. Total organic carbon and nitrogen and their stable isotope compositions were determined in each organ, using EA‐IRMS. The musts were analysed for their content of soluble sugars, acids, NH4+ and amino acids.

Results ‐ Grapevine compensated higher N demand from the grapes by assimilating more N through leaves and roots and mobilizing more N from reserves. The foliar supply of urea limited N mobilization from the roots, preserving the reserves for the following year. Must amino‐acid profiles varied significantly with the yield. Yield had no impact neither on vegetative development nor on grape maturation. With increasing yield, N concentration remained constant in the canopy and grapes at harvest, to the detriment of the N content in roots. Urea assimilation was positively correlated with the yield (r = 0.68, P = 0.029). Urea supply had a positive impact on yeast assimilable nitrogen concentration in the must only under higher yield conditions. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Thibaut VERDENAL (1,2), Jorge E. SPANGENBERG (2), Vivian ZUFFEREY (1), Agnes DIENES‐NAGY (1), Olivier VIRET (3), Cornelis VAN LEEUWEN (4), Jean‐Laurent SPRING (1)

(1) Agroscope, Av. Rochettaz 21, CH-1009 Pully, Switzerland
(2) Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
(3) Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
(4) EGFV,Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

 Nitrogen, partitioning, yield, foliar urea, isotope labelling, amino acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE).

Socioeconomic impact of the LIFE Climawin project from the perspective of employees

This study examines, from the perspective of the employees at Bosque de Matasnos—a demonstrative winery participating in the LIFE Climawin project—the socioeconomic impact and potential contributions of the initiative to the wine sector and the sustainable development of the Ribera del Duero region in Spain.

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage.