GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Nitrogen partitioning among vine organs as a consequence of cluster thinning

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Abstract

Context and purpose of the study ‐ Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation, partitioning and 15 mobilization from the reserves is studied through foliar application of N isotope‐labelled urea over a two‐year period. The final scope is to optimize fertilizer use efficiency and grape composition. Here are summarized the results from the first year of experimentation.

Material and methods ‐ Two blocs (control and test) of 12 homogeneous potted grapevines each (Vitis vinifera L. Chasselas) were grown under field conditions. During summer 2017, cluster thinning allowed to create a large yield gradient (from 0.5 to 2.5 kg/m2 of soil). Vegetative development—canopy weight, leaf area, photosynthesis activity—and yield parameters —bud fruitfulness, bunch and berry weights, number of bunches and total yield per vine— were measured. All the vines were excavated at harvestand the organs were separated (roots, trunk, canopy, pomace and must), with the aim of monitoring N partitioning in the plant. The test bloc received 20 kg/ha of foliar‐applied 15N labelled urea at veraison. Total organic carbon and nitrogen and their stable isotope compositions were determined in each organ, using EA‐IRMS. The musts were analysed for their content of soluble sugars, acids, NH4+ and amino acids.

Results ‐ Grapevine compensated higher N demand from the grapes by assimilating more N through leaves and roots and mobilizing more N from reserves. The foliar supply of urea limited N mobilization from the roots, preserving the reserves for the following year. Must amino‐acid profiles varied significantly with the yield. Yield had no impact neither on vegetative development nor on grape maturation. With increasing yield, N concentration remained constant in the canopy and grapes at harvest, to the detriment of the N content in roots. Urea assimilation was positively correlated with the yield (r = 0.68, P = 0.029). Urea supply had a positive impact on yeast assimilable nitrogen concentration in the must only under higher yield conditions. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Thibaut VERDENAL (1,2), Jorge E. SPANGENBERG (2), Vivian ZUFFEREY (1), Agnes DIENES‐NAGY (1), Olivier VIRET (3), Cornelis VAN LEEUWEN (4), Jean‐Laurent SPRING (1)

(1) Agroscope, Av. Rochettaz 21, CH-1009 Pully, Switzerland
(2) Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
(3) Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
(4) EGFV,Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

 Nitrogen, partitioning, yield, foliar urea, isotope labelling, amino acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.