GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Nitrogen partitioning among vine organs as a consequence of cluster thinning

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Abstract

Context and purpose of the study ‐ Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation, partitioning and 15 mobilization from the reserves is studied through foliar application of N isotope‐labelled urea over a two‐year period. The final scope is to optimize fertilizer use efficiency and grape composition. Here are summarized the results from the first year of experimentation.

Material and methods ‐ Two blocs (control and test) of 12 homogeneous potted grapevines each (Vitis vinifera L. Chasselas) were grown under field conditions. During summer 2017, cluster thinning allowed to create a large yield gradient (from 0.5 to 2.5 kg/m2 of soil). Vegetative development—canopy weight, leaf area, photosynthesis activity—and yield parameters —bud fruitfulness, bunch and berry weights, number of bunches and total yield per vine— were measured. All the vines were excavated at harvestand the organs were separated (roots, trunk, canopy, pomace and must), with the aim of monitoring N partitioning in the plant. The test bloc received 20 kg/ha of foliar‐applied 15N labelled urea at veraison. Total organic carbon and nitrogen and their stable isotope compositions were determined in each organ, using EA‐IRMS. The musts were analysed for their content of soluble sugars, acids, NH4+ and amino acids.

Results ‐ Grapevine compensated higher N demand from the grapes by assimilating more N through leaves and roots and mobilizing more N from reserves. The foliar supply of urea limited N mobilization from the roots, preserving the reserves for the following year. Must amino‐acid profiles varied significantly with the yield. Yield had no impact neither on vegetative development nor on grape maturation. With increasing yield, N concentration remained constant in the canopy and grapes at harvest, to the detriment of the N content in roots. Urea assimilation was positively correlated with the yield (r = 0.68, P = 0.029). Urea supply had a positive impact on yeast assimilable nitrogen concentration in the must only under higher yield conditions. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Thibaut VERDENAL (1,2), Jorge E. SPANGENBERG (2), Vivian ZUFFEREY (1), Agnes DIENES‐NAGY (1), Olivier VIRET (3), Cornelis VAN LEEUWEN (4), Jean‐Laurent SPRING (1)

(1) Agroscope, Av. Rochettaz 21, CH-1009 Pully, Switzerland
(2) Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
(3) Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), Av. de Marcelin 29, CH-1110 Morges, Switzerland
(4) EGFV,Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

 Nitrogen, partitioning, yield, foliar urea, isotope labelling, amino acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Viticultural sites and their valorisation in Istria (Croatia)

Pratiquement tout le territoire d’Istrie possède les bonnes conditions naturelles pour la viticulture, laquelle dans ce lieu a une tradition millénaire. La viticulture était et reste toujours la plus importante branche de production agraire et d’économie. Les sites viticoles en Istrie sont caractérisés par des diverses conditions naturelles.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].