GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Abstract

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.

Material and methods – To obtain Amarone wine, Corvina grapes before vinification has to be stored in dehydrating room in order to achieve at least the 30% weight loss. In our experiment (2016/17) we harvested Corvina grapes from the same vineyards but before vinification we used two different withering conditions: i) room with natural air movement forced by opening the windows mainly during the day and ii) room equipped with mechanical air movement system (fans) and air humidity artificial control (around or below 70/75%). In both conditions grape has been left since their 30% weigh loss. Berry macro-composition (sugar, acids, pH) and micro-composition (total polyphenols, anthocyanins, stilbenes, aroma compounds) has been detected for the two grapes postharvest management and the two vinification has been done too.

Results – The healthy berries status did not signed any differences. In artificial conditions grape lost 30% weigh 15/25 days before the natural ones, sugar enrichment was not strictly linked with the water loss, but it was more related with the withering conditions and ripeness stage at harvest. Anthocyanins skin content resulted higher or slightly higher in natural conditions but anthocyanin extractability are equal. Stilbenes compound (trans resveratrol, trans piceide, δ viniferina, etc) are higher in grapes dried in artificial conditions. This latter result could be linked to less stress responses that natural condition impose to berry cells. The total aromatic compounds resulted more pronounced in grapes dried in natural conditions; the single chemical compounds that resulted in higher quantity were: nerolo, geraniolo, 3-OH-β-damascenone, vomifoliolo, guaiacolo, metilsalicilato, alcolbenzilico, eugenolo, acetovanillone. The differences were clearly in favour of natural withering system especially in 2015 and 2017. In terms of wine sensory profile the wine obtained with grape dehydrated in natural room has been preferred for its higher pronounced body and structure, for its spices, fresh and ripe red fruit flavour. The results underline that postharvest dehydration conditions have a significant impact on general bunch metabolism and even if the water loss increases the solute concentration, physiological and biochemical processes may affect berry composition and wine character under different dehydrating choices.  

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Diego TOMASI (1), L. LOVAT (1), T. NARDI (1), A. LONARDI (2)

(1) CREA-VE, via XXVIII Aprile, 26 – 31015 Conegliano (TV) Italy
(2) BERTANIDOMAINS, Via Asiago, 1 – 37023 Grezzana (VR) Italy

Contact the author

Keywords

Grapevine, Corvina, Dehydration, Amarone

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.