Macrowine 2021
IVES 9 IVES Conference Series 9 Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

Abstract

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation. In this work, the reactions of (-)-epicatechin in the presence of acetaldehyde were studied in model solution systems at wine pH by UPLC-LTQ-Orbitrap-high resolution mass spectrometry. High resolution mass spectrometry provides exact mass measurements thus leading to elemental composition assignment of molecules which is an essential step for identification of new-formed compounds. By applying petrolomics-derived data interpretation strategies such as the untargeted Van Krevelen diagrams and Kendricks mass defect plots, described earlier in black tea thearubigins (1), more than 40 compounds were found including the homogeneous bridged derivatives and the well-known vinyl and ethanol adducts (2,3). Other compounds from polymer series such as the hexamer and heptamer epicatechin bridged derivatives and several xanthylium salts were identified for the first time. Consequently, in this work, a structural model for acetaldehyde-mediated reaction cascades involving formation of ethanol adducts, vinyl adducts, ethyl brides, loss of water molecules to form xanthylium salts…was developed.

References 1. Kuhnert et al. Arch. Biochem. Biophys., 2010, 501, 37–51 2. Fulcrand et al. J. Chromatogr- A. 1996, 752, 85-91 3. Es Safi et al. J. Agric. Food Chem. 1999, 47, 2088-2095

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Anna Vallverdu-Queralt*, Emmanuelle Meudec, Nicolas Sommerer, Rosa Maria Lamuela Ravento, Veronique Cheynier

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.