Macrowine 2021
IVES 9 IVES Conference Series 9 Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

Abstract

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation. In this work, the reactions of (-)-epicatechin in the presence of acetaldehyde were studied in model solution systems at wine pH by UPLC-LTQ-Orbitrap-high resolution mass spectrometry. High resolution mass spectrometry provides exact mass measurements thus leading to elemental composition assignment of molecules which is an essential step for identification of new-formed compounds. By applying petrolomics-derived data interpretation strategies such as the untargeted Van Krevelen diagrams and Kendricks mass defect plots, described earlier in black tea thearubigins (1), more than 40 compounds were found including the homogeneous bridged derivatives and the well-known vinyl and ethanol adducts (2,3). Other compounds from polymer series such as the hexamer and heptamer epicatechin bridged derivatives and several xanthylium salts were identified for the first time. Consequently, in this work, a structural model for acetaldehyde-mediated reaction cascades involving formation of ethanol adducts, vinyl adducts, ethyl brides, loss of water molecules to form xanthylium salts…was developed.

References 1. Kuhnert et al. Arch. Biochem. Biophys., 2010, 501, 37–51 2. Fulcrand et al. J. Chromatogr- A. 1996, 752, 85-91 3. Es Safi et al. J. Agric. Food Chem. 1999, 47, 2088-2095

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Anna Vallverdu-Queralt*, Emmanuelle Meudec, Nicolas Sommerer, Rosa Maria Lamuela Ravento, Veronique Cheynier

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.