Macrowine 2021
IVES 9 IVES Conference Series 9 Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Abstract

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar. Presently unclear is the role, wine temperature plays in this issue. The impact of wine temperature, pH and mixing, on the fining efficiency of different bentonites has been studied in a Gewürztraminer wine. Three different types of bentonites were used in this trial; a sodium-bentonite, a sodium-calcium-bentonite and a sodium-calcium-bentonite which additionally contains tannins. This paper shows the effects of low wine temperatures on the efficiency of three different commercial bentonites. Further, the effect of an additional whirling up of the settled bentonite is studied to understand if this could be a measure to increase the effectiveness of the fining treatment. Wine temperature has an impact on the performance of the bentonite fining. Low temperatures make it more difficult to achieve protein stability for all the different bentonites in investigation. Not one single wine achieved protein stability when it was fined at 4°C with any of the three bentonites in investigation. At low wine temperature always an additional fining treatment or anew shaking of the wines was necessary to achieve protein stability. Especially the sodium-bentonite Bentogran showed an important loss in efficiency when wines were cold. NaCalit and Super Black Jell were less affected from low wine temperatures and achieved tolerable turbidity levels when bentonite was stirred up again after one week of contact. Mixing up the settled bentonite once again when settled is an efficient way to improve the effectiveness of the bentonite fining. This simple and easy to carry out measure can be an interesting strategy for the praxis to avoid additional fining treatments. Further, to reduce the discrepancy among the laboratory and cellar conditions, two possibilities exist: (a) fining trials could be conducted at the same temperature as the wine in the cellar has, (b) bentonite fining in the cellar should not occur at too low wine temperatures. These are relevant findings for winemakers who do their bentonite fining in cold wines and deal with varieties with a high wine pH.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*, Andreas Putti, Norbert Kofler

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.