Macrowine 2021
IVES 9 IVES Conference Series 9 Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Abstract

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar. Presently unclear is the role, wine temperature plays in this issue. The impact of wine temperature, pH and mixing, on the fining efficiency of different bentonites has been studied in a Gewürztraminer wine. Three different types of bentonites were used in this trial; a sodium-bentonite, a sodium-calcium-bentonite and a sodium-calcium-bentonite which additionally contains tannins. This paper shows the effects of low wine temperatures on the efficiency of three different commercial bentonites. Further, the effect of an additional whirling up of the settled bentonite is studied to understand if this could be a measure to increase the effectiveness of the fining treatment. Wine temperature has an impact on the performance of the bentonite fining. Low temperatures make it more difficult to achieve protein stability for all the different bentonites in investigation. Not one single wine achieved protein stability when it was fined at 4°C with any of the three bentonites in investigation. At low wine temperature always an additional fining treatment or anew shaking of the wines was necessary to achieve protein stability. Especially the sodium-bentonite Bentogran showed an important loss in efficiency when wines were cold. NaCalit and Super Black Jell were less affected from low wine temperatures and achieved tolerable turbidity levels when bentonite was stirred up again after one week of contact. Mixing up the settled bentonite once again when settled is an efficient way to improve the effectiveness of the bentonite fining. This simple and easy to carry out measure can be an interesting strategy for the praxis to avoid additional fining treatments. Further, to reduce the discrepancy among the laboratory and cellar conditions, two possibilities exist: (a) fining trials could be conducted at the same temperature as the wine in the cellar has, (b) bentonite fining in the cellar should not occur at too low wine temperatures. These are relevant findings for winemakers who do their bentonite fining in cold wines and deal with varieties with a high wine pH.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*, Andreas Putti, Norbert Kofler

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.