Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Abstract

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze. The aim of this study was to investigate the effects of grape harvesting and processing conditions on extraction of haze-forming PR proteins and phenolics, and the consequent impact on protein stability of wine. Sauvignon Blanc grapes were harvested by hand and by machine in 2011 and 2012 in Marlborough, New Zealand. Hand harvested grapes were processed by two different treatments: whole bunch pressing without skin contact, and pressing after destemming and crushing followed by 3 h skin contact; machine harvested grapes were processed by pressing after destemming and crushing followed by 3 h skin contact. For each treatment, the juice pressing procedure was carried out by gradually increasing the pressing pressure to three different levels (0.4 MPa, 0.8 MPa and 1.6 MPa), and juice samples were collected at each pressure point and bottle-fermented separately. Results of this study showed that pressing after destemming and crushing followed by 3 h skin contact can result in greater extraction of proteins and phenolics from grapes into juice compared with whole bunch pressing. Juice and wine obtained from machine harvested grapes showed a tendency of having lower concentration of proteins, as well as, PR proteins. Juice and wine obtained from higher pressing pressure showed the highest concentration of phenolics but the lowest concentration of proteins, suggesting that proteins in grapes are easily extracted at low pressing pressure, but greater extraction of phenolics in grapes requires higher pressing pressure. Analysis of wine protein stability showed a linear correlation between bentonite requirement and the concentration of chitinases in wine, indicating the importance of removal of chitinases to achieve protein stabilization. The findings presented here contribute to an improved understanding of the variable concentration of haze-forming PR proteins in juice as affected by grape harvesting and processing conditions, and hence the variation in bentonite requirement for resultant wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Bin Tian*, Claire Grose, James Morton, Marlene Jaspers, Mike Trought, Roland Harrison

*Lincoln University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.