Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Abstract

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze. The aim of this study was to investigate the effects of grape harvesting and processing conditions on extraction of haze-forming PR proteins and phenolics, and the consequent impact on protein stability of wine. Sauvignon Blanc grapes were harvested by hand and by machine in 2011 and 2012 in Marlborough, New Zealand. Hand harvested grapes were processed by two different treatments: whole bunch pressing without skin contact, and pressing after destemming and crushing followed by 3 h skin contact; machine harvested grapes were processed by pressing after destemming and crushing followed by 3 h skin contact. For each treatment, the juice pressing procedure was carried out by gradually increasing the pressing pressure to three different levels (0.4 MPa, 0.8 MPa and 1.6 MPa), and juice samples were collected at each pressure point and bottle-fermented separately. Results of this study showed that pressing after destemming and crushing followed by 3 h skin contact can result in greater extraction of proteins and phenolics from grapes into juice compared with whole bunch pressing. Juice and wine obtained from machine harvested grapes showed a tendency of having lower concentration of proteins, as well as, PR proteins. Juice and wine obtained from higher pressing pressure showed the highest concentration of phenolics but the lowest concentration of proteins, suggesting that proteins in grapes are easily extracted at low pressing pressure, but greater extraction of phenolics in grapes requires higher pressing pressure. Analysis of wine protein stability showed a linear correlation between bentonite requirement and the concentration of chitinases in wine, indicating the importance of removal of chitinases to achieve protein stabilization. The findings presented here contribute to an improved understanding of the variable concentration of haze-forming PR proteins in juice as affected by grape harvesting and processing conditions, and hence the variation in bentonite requirement for resultant wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Bin Tian*, Claire Grose, James Morton, Marlene Jaspers, Mike Trought, Roland Harrison

*Lincoln University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.