Macrowine 2021
IVES 9 IVES Conference Series 9 Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

Abstract

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze. The aim of this study was to investigate the effects of grape harvesting and processing conditions on extraction of haze-forming PR proteins and phenolics, and the consequent impact on protein stability of wine. Sauvignon Blanc grapes were harvested by hand and by machine in 2011 and 2012 in Marlborough, New Zealand. Hand harvested grapes were processed by two different treatments: whole bunch pressing without skin contact, and pressing after destemming and crushing followed by 3 h skin contact; machine harvested grapes were processed by pressing after destemming and crushing followed by 3 h skin contact. For each treatment, the juice pressing procedure was carried out by gradually increasing the pressing pressure to three different levels (0.4 MPa, 0.8 MPa and 1.6 MPa), and juice samples were collected at each pressure point and bottle-fermented separately. Results of this study showed that pressing after destemming and crushing followed by 3 h skin contact can result in greater extraction of proteins and phenolics from grapes into juice compared with whole bunch pressing. Juice and wine obtained from machine harvested grapes showed a tendency of having lower concentration of proteins, as well as, PR proteins. Juice and wine obtained from higher pressing pressure showed the highest concentration of phenolics but the lowest concentration of proteins, suggesting that proteins in grapes are easily extracted at low pressing pressure, but greater extraction of phenolics in grapes requires higher pressing pressure. Analysis of wine protein stability showed a linear correlation between bentonite requirement and the concentration of chitinases in wine, indicating the importance of removal of chitinases to achieve protein stabilization. The findings presented here contribute to an improved understanding of the variable concentration of haze-forming PR proteins in juice as affected by grape harvesting and processing conditions, and hence the variation in bentonite requirement for resultant wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Bin Tian*, Claire Grose, James Morton, Marlene Jaspers, Mike Trought, Roland Harrison

*Lincoln University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.