Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Abstract

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality. A better management of nitrogen fertilization of vineyards can significantly increase the quantity of yeast available nitrogen (YAN) in the grape and consequently the wine quality. A metabolomics study comparing Chasselas and Doral wines produced from grapes of two variants, nitrogen deficient culture versus supplemented with foliar urea, indicated several markers related to nitrogen supplementation of grapes [2]. Four substances from these potential markers were chosen for the present study: 2-phenylethanol, 2- plus 3-methylbutanol, succinic acid and prolin. The production of these compounds is known to be influenced by the nitrogen content of the must and they are in easily measurable concentrations in the wine. The objective of this work is to study the correlation between the concentration of YAN in must and the concentration of the four potential chemical markers in the wine using a significant number of samples ( > 130) including different grape varieties (13), harvests (2009-2014) and yeast types. The goal is to create a model for the retro-prediction of YAN concentration in the original must based on the chemical analysis of the wine. This information can be used by winemakers to optimize nitrogen fertilization of their vineyards. Wines produced in the cellar of AGROSCOPE using a standard protocol without addition of ammonium salt were used for this study. The concentration of YAN in the must was determined before the fermentation. The concentrations of the potential markers in the wine were measured for: the higher alcohols (2-phenylethanol, 2- and 3-methylbutanol) by GC-FID, for succinic acid by enzymatic method and for prolin by HPLC-MS. The four markers show a good correlation (R2 > 0.7) with YAN content in must. Grape variety and yeast variety strongly influence these correlations whereas harvest is less important. The distribution of YAN between ammonium and different individual amino acids explains the major part of the effect from the grape varieties. Reference 1. Bréant, L., Marti, G., Dienes-Nagy, Á., Zufferey, V., Rösti, J., Lorenzini, F., Gindro, K., Viret, O., Wolfender, J-L., In Vino Analytica Scientia 2013, Abstract Book, Poster 80 2. Lorenzini, F.; Vuichard, F.; Revue Suisse de Viticulture Arboriculture Horticulture, 44 (2012), pp 96-103

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Agnes Dienes-Nagy*, Carole Koestel, Fabrice Lorenzini, Johannes Rösti

*AGROSCOPE

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).