Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Abstract

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality. A better management of nitrogen fertilization of vineyards can significantly increase the quantity of yeast available nitrogen (YAN) in the grape and consequently the wine quality. A metabolomics study comparing Chasselas and Doral wines produced from grapes of two variants, nitrogen deficient culture versus supplemented with foliar urea, indicated several markers related to nitrogen supplementation of grapes [2]. Four substances from these potential markers were chosen for the present study: 2-phenylethanol, 2- plus 3-methylbutanol, succinic acid and prolin. The production of these compounds is known to be influenced by the nitrogen content of the must and they are in easily measurable concentrations in the wine. The objective of this work is to study the correlation between the concentration of YAN in must and the concentration of the four potential chemical markers in the wine using a significant number of samples ( > 130) including different grape varieties (13), harvests (2009-2014) and yeast types. The goal is to create a model for the retro-prediction of YAN concentration in the original must based on the chemical analysis of the wine. This information can be used by winemakers to optimize nitrogen fertilization of their vineyards. Wines produced in the cellar of AGROSCOPE using a standard protocol without addition of ammonium salt were used for this study. The concentration of YAN in the must was determined before the fermentation. The concentrations of the potential markers in the wine were measured for: the higher alcohols (2-phenylethanol, 2- and 3-methylbutanol) by GC-FID, for succinic acid by enzymatic method and for prolin by HPLC-MS. The four markers show a good correlation (R2 > 0.7) with YAN content in must. Grape variety and yeast variety strongly influence these correlations whereas harvest is less important. The distribution of YAN between ammonium and different individual amino acids explains the major part of the effect from the grape varieties. Reference 1. Bréant, L., Marti, G., Dienes-Nagy, Á., Zufferey, V., Rösti, J., Lorenzini, F., Gindro, K., Viret, O., Wolfender, J-L., In Vino Analytica Scientia 2013, Abstract Book, Poster 80 2. Lorenzini, F.; Vuichard, F.; Revue Suisse de Viticulture Arboriculture Horticulture, 44 (2012), pp 96-103

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Agnes Dienes-Nagy*, Carole Koestel, Fabrice Lorenzini, Johannes Rösti

*AGROSCOPE

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.