Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Abstract

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality. A better management of nitrogen fertilization of vineyards can significantly increase the quantity of yeast available nitrogen (YAN) in the grape and consequently the wine quality. A metabolomics study comparing Chasselas and Doral wines produced from grapes of two variants, nitrogen deficient culture versus supplemented with foliar urea, indicated several markers related to nitrogen supplementation of grapes [2]. Four substances from these potential markers were chosen for the present study: 2-phenylethanol, 2- plus 3-methylbutanol, succinic acid and prolin. The production of these compounds is known to be influenced by the nitrogen content of the must and they are in easily measurable concentrations in the wine. The objective of this work is to study the correlation between the concentration of YAN in must and the concentration of the four potential chemical markers in the wine using a significant number of samples ( > 130) including different grape varieties (13), harvests (2009-2014) and yeast types. The goal is to create a model for the retro-prediction of YAN concentration in the original must based on the chemical analysis of the wine. This information can be used by winemakers to optimize nitrogen fertilization of their vineyards. Wines produced in the cellar of AGROSCOPE using a standard protocol without addition of ammonium salt were used for this study. The concentration of YAN in the must was determined before the fermentation. The concentrations of the potential markers in the wine were measured for: the higher alcohols (2-phenylethanol, 2- and 3-methylbutanol) by GC-FID, for succinic acid by enzymatic method and for prolin by HPLC-MS. The four markers show a good correlation (R2 > 0.7) with YAN content in must. Grape variety and yeast variety strongly influence these correlations whereas harvest is less important. The distribution of YAN between ammonium and different individual amino acids explains the major part of the effect from the grape varieties. Reference 1. Bréant, L., Marti, G., Dienes-Nagy, Á., Zufferey, V., Rösti, J., Lorenzini, F., Gindro, K., Viret, O., Wolfender, J-L., In Vino Analytica Scientia 2013, Abstract Book, Poster 80 2. Lorenzini, F.; Vuichard, F.; Revue Suisse de Viticulture Arboriculture Horticulture, 44 (2012), pp 96-103

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Agnes Dienes-Nagy*, Carole Koestel, Fabrice Lorenzini, Johannes Rösti

*AGROSCOPE

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).