Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Abstract

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality. A better management of nitrogen fertilization of vineyards can significantly increase the quantity of yeast available nitrogen (YAN) in the grape and consequently the wine quality. A metabolomics study comparing Chasselas and Doral wines produced from grapes of two variants, nitrogen deficient culture versus supplemented with foliar urea, indicated several markers related to nitrogen supplementation of grapes [2]. Four substances from these potential markers were chosen for the present study: 2-phenylethanol, 2- plus 3-methylbutanol, succinic acid and prolin. The production of these compounds is known to be influenced by the nitrogen content of the must and they are in easily measurable concentrations in the wine. The objective of this work is to study the correlation between the concentration of YAN in must and the concentration of the four potential chemical markers in the wine using a significant number of samples ( > 130) including different grape varieties (13), harvests (2009-2014) and yeast types. The goal is to create a model for the retro-prediction of YAN concentration in the original must based on the chemical analysis of the wine. This information can be used by winemakers to optimize nitrogen fertilization of their vineyards. Wines produced in the cellar of AGROSCOPE using a standard protocol without addition of ammonium salt were used for this study. The concentration of YAN in the must was determined before the fermentation. The concentrations of the potential markers in the wine were measured for: the higher alcohols (2-phenylethanol, 2- and 3-methylbutanol) by GC-FID, for succinic acid by enzymatic method and for prolin by HPLC-MS. The four markers show a good correlation (R2 > 0.7) with YAN content in must. Grape variety and yeast variety strongly influence these correlations whereas harvest is less important. The distribution of YAN between ammonium and different individual amino acids explains the major part of the effect from the grape varieties. Reference 1. Bréant, L., Marti, G., Dienes-Nagy, Á., Zufferey, V., Rösti, J., Lorenzini, F., Gindro, K., Viret, O., Wolfender, J-L., In Vino Analytica Scientia 2013, Abstract Book, Poster 80 2. Lorenzini, F.; Vuichard, F.; Revue Suisse de Viticulture Arboriculture Horticulture, 44 (2012), pp 96-103

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Agnes Dienes-Nagy*, Carole Koestel, Fabrice Lorenzini, Johannes Rösti

*AGROSCOPE

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).