Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Abstract

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality. A better management of nitrogen fertilization of vineyards can significantly increase the quantity of yeast available nitrogen (YAN) in the grape and consequently the wine quality. A metabolomics study comparing Chasselas and Doral wines produced from grapes of two variants, nitrogen deficient culture versus supplemented with foliar urea, indicated several markers related to nitrogen supplementation of grapes [2]. Four substances from these potential markers were chosen for the present study: 2-phenylethanol, 2- plus 3-methylbutanol, succinic acid and prolin. The production of these compounds is known to be influenced by the nitrogen content of the must and they are in easily measurable concentrations in the wine. The objective of this work is to study the correlation between the concentration of YAN in must and the concentration of the four potential chemical markers in the wine using a significant number of samples ( > 130) including different grape varieties (13), harvests (2009-2014) and yeast types. The goal is to create a model for the retro-prediction of YAN concentration in the original must based on the chemical analysis of the wine. This information can be used by winemakers to optimize nitrogen fertilization of their vineyards. Wines produced in the cellar of AGROSCOPE using a standard protocol without addition of ammonium salt were used for this study. The concentration of YAN in the must was determined before the fermentation. The concentrations of the potential markers in the wine were measured for: the higher alcohols (2-phenylethanol, 2- and 3-methylbutanol) by GC-FID, for succinic acid by enzymatic method and for prolin by HPLC-MS. The four markers show a good correlation (R2 > 0.7) with YAN content in must. Grape variety and yeast variety strongly influence these correlations whereas harvest is less important. The distribution of YAN between ammonium and different individual amino acids explains the major part of the effect from the grape varieties. Reference 1. Bréant, L., Marti, G., Dienes-Nagy, Á., Zufferey, V., Rösti, J., Lorenzini, F., Gindro, K., Viret, O., Wolfender, J-L., In Vino Analytica Scientia 2013, Abstract Book, Poster 80 2. Lorenzini, F.; Vuichard, F.; Revue Suisse de Viticulture Arboriculture Horticulture, 44 (2012), pp 96-103

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Agnes Dienes-Nagy*, Carole Koestel, Fabrice Lorenzini, Johannes Rösti

*AGROSCOPE

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.