Macrowine 2021
IVES 9 IVES Conference Series 9 Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Abstract

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept. Monastrell red wines, predominant varietal wines from the Southern of Spain, were elaborated with grapes from four different terroirs: Cañada Judío, Albatana, Bullas and Montealegre. Climate and soil data from different terroirs were gathered to properly distinguish them. Oligosaccharide fractions from wines were isolated, after removal of phenolic compounds, by high resolution size-exclusion chromatography. The glycosyl–linkages composition was determined by GC–MS of the partially methylated alditol acetates. Results show differences in the glycosyl–linkages composition of oligosaccharides from wines, according to their terroir. The molar percentage of glucose, rhamnose, arabinose, xylose and mannose residues exhibit marked differences depending on the terroir. The ratio of the terminal to the branched residues for Cañada Judío, Albatana, Bullas and Montealegre oligosaccharides is, respectively, 0.75, 0.85, 0.99 and 0.89. Proportions of oligosaccharides families have been calculated from glycosyl-linkage data (3,4,5). Montealegre wine clearly presents the lowest relative molar percentage for the oligosaccharides from yeasts (the sum of OligoGlucans and OligoMannans) and also for OligoXyloGlucans, whereas Bullas wine exhibits by far the lowest release of OligoRhamnogalacturonans. OligoArabinans and OligoArabiGalactans type II also show differences according to the terroir. All these data were treated by PCA to permit a best understanding. The projections on the first axis show obvious separation of Montealegre, whereas a clear separation of Albatana is observed in the projections on the second axis. The first and second principal components represent, respectively, 69% and 19% of the variability for samples. In summary, our results suggest the impact of “terroir” on the structure and the composition of wine oligosaccharide fraction, which could affect their physicochemical and sensory properties.

1.Quijada-Morín et al. (2014). Food Chem. 154, 44–51. 2.Boulet et al. (2016). Food Chem. 190, 357–363 3.Ducasse et al. (2011). J Agric Food Chem. 59, 6558–6567. 4.Ballou (1982). In Strathern, Jones & Broach (Eds.), Metabolism and gene expression (335–360), NY. 5.Fry et al. (1983). Plant Physiol. 89, 1–3.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rafael Apolinar-Valiente*, Encarna Gómez-Plaza, José María Ros-García, Pascale Williams, Thierry Doco

*INRA Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.