Macrowine 2021
IVES 9 IVES Conference Series 9 Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Abstract

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept. Monastrell red wines, predominant varietal wines from the Southern of Spain, were elaborated with grapes from four different terroirs: Cañada Judío, Albatana, Bullas and Montealegre. Climate and soil data from different terroirs were gathered to properly distinguish them. Oligosaccharide fractions from wines were isolated, after removal of phenolic compounds, by high resolution size-exclusion chromatography. The glycosyl–linkages composition was determined by GC–MS of the partially methylated alditol acetates. Results show differences in the glycosyl–linkages composition of oligosaccharides from wines, according to their terroir. The molar percentage of glucose, rhamnose, arabinose, xylose and mannose residues exhibit marked differences depending on the terroir. The ratio of the terminal to the branched residues for Cañada Judío, Albatana, Bullas and Montealegre oligosaccharides is, respectively, 0.75, 0.85, 0.99 and 0.89. Proportions of oligosaccharides families have been calculated from glycosyl-linkage data (3,4,5). Montealegre wine clearly presents the lowest relative molar percentage for the oligosaccharides from yeasts (the sum of OligoGlucans and OligoMannans) and also for OligoXyloGlucans, whereas Bullas wine exhibits by far the lowest release of OligoRhamnogalacturonans. OligoArabinans and OligoArabiGalactans type II also show differences according to the terroir. All these data were treated by PCA to permit a best understanding. The projections on the first axis show obvious separation of Montealegre, whereas a clear separation of Albatana is observed in the projections on the second axis. The first and second principal components represent, respectively, 69% and 19% of the variability for samples. In summary, our results suggest the impact of “terroir” on the structure and the composition of wine oligosaccharide fraction, which could affect their physicochemical and sensory properties.

1.Quijada-Morín et al. (2014). Food Chem. 154, 44–51. 2.Boulet et al. (2016). Food Chem. 190, 357–363 3.Ducasse et al. (2011). J Agric Food Chem. 59, 6558–6567. 4.Ballou (1982). In Strathern, Jones & Broach (Eds.), Metabolism and gene expression (335–360), NY. 5.Fry et al. (1983). Plant Physiol. 89, 1–3.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rafael Apolinar-Valiente*, Encarna Gómez-Plaza, José María Ros-García, Pascale Williams, Thierry Doco

*INRA Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.