Macrowine 2021
IVES 9 IVES Conference Series 9 Application of high power ultrasounds during red wine vinification

Application of high power ultrasounds during red wine vinification

Abstract

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique. During traditional winemaking, grapes are crushed and skin macerated for several days, with pumps over to facilitate the color extraction. To increase this extraction, some chemical (maceration enzymes) or physical technologies (thermovinification, criomaceration, flash-expansion) can be applied. In this work, a new methodology has being tested. This methodology consists in the application of high power ultrasounds to crushed grapes to increase the extraction of phenolic compounds. Ultrasound is a non-thermal processing method, which is already widely used in the food industry due to its mild application but significant effects on the product. The mechanical activity of the ultrasound breaks the cell wall mechanically by the cavitation shear forces, and facilitates the transfer of phenolic and other compounds from the cell into the must. Also, the particle size reduction by the ultrasonic cavitation increases the surface area in contact between the solid and the liquid phase. High power ultrasounds have been used in the vinification of Monastrell grapes. Crushed grapes were treated with ultrasound, considering as variables the time the ultrasounds were applied to the crushed grapes (two different times were applied) and the duration of the fermentative skin maceration period (3, 6 or 8 days) and the results were compared with a control vinification, where grapes were not subjected to any treatment and were skin macerated during 8 days. The wine chromatic characteristics (determined spectrophotometrically) and the individual phenolic compounds (anthocyanins and tannins, determined by HPLC) were followed during all the maceration period, at the end of alcoholic fermentation and after three months in bottle. The wines made with ultrasound treated grapes presented differences with control wine, especially as regard total phenol content and tannin content, the wines with three days of maceration time presenting similar concentration of anthocyanins and twice the concentration of tannins than control wines with 8 days of maceration time. Other possible advantages of wines made with ultrasound treated grapes will be discussed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Encarna Gómez-Plaza*, Ana Andres-Grau, Ana Bautista-Ortín, Juan Iniesta, Ricardo Jurado, Salvador Terrades

*University of Murcia

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.