Macrowine 2021
IVES 9 IVES Conference Series 9 Application of high power ultrasounds during red wine vinification

Application of high power ultrasounds during red wine vinification

Abstract

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique. During traditional winemaking, grapes are crushed and skin macerated for several days, with pumps over to facilitate the color extraction. To increase this extraction, some chemical (maceration enzymes) or physical technologies (thermovinification, criomaceration, flash-expansion) can be applied. In this work, a new methodology has being tested. This methodology consists in the application of high power ultrasounds to crushed grapes to increase the extraction of phenolic compounds. Ultrasound is a non-thermal processing method, which is already widely used in the food industry due to its mild application but significant effects on the product. The mechanical activity of the ultrasound breaks the cell wall mechanically by the cavitation shear forces, and facilitates the transfer of phenolic and other compounds from the cell into the must. Also, the particle size reduction by the ultrasonic cavitation increases the surface area in contact between the solid and the liquid phase. High power ultrasounds have been used in the vinification of Monastrell grapes. Crushed grapes were treated with ultrasound, considering as variables the time the ultrasounds were applied to the crushed grapes (two different times were applied) and the duration of the fermentative skin maceration period (3, 6 or 8 days) and the results were compared with a control vinification, where grapes were not subjected to any treatment and were skin macerated during 8 days. The wine chromatic characteristics (determined spectrophotometrically) and the individual phenolic compounds (anthocyanins and tannins, determined by HPLC) were followed during all the maceration period, at the end of alcoholic fermentation and after three months in bottle. The wines made with ultrasound treated grapes presented differences with control wine, especially as regard total phenol content and tannin content, the wines with three days of maceration time presenting similar concentration of anthocyanins and twice the concentration of tannins than control wines with 8 days of maceration time. Other possible advantages of wines made with ultrasound treated grapes will be discussed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Encarna Gómez-Plaza*, Ana Andres-Grau, Ana Bautista-Ortín, Juan Iniesta, Ricardo Jurado, Salvador Terrades

*University of Murcia

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.