Macrowine 2021
IVES 9 IVES Conference Series 9 Application of high power ultrasounds during red wine vinification

Application of high power ultrasounds during red wine vinification

Abstract

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique. During traditional winemaking, grapes are crushed and skin macerated for several days, with pumps over to facilitate the color extraction. To increase this extraction, some chemical (maceration enzymes) or physical technologies (thermovinification, criomaceration, flash-expansion) can be applied. In this work, a new methodology has being tested. This methodology consists in the application of high power ultrasounds to crushed grapes to increase the extraction of phenolic compounds. Ultrasound is a non-thermal processing method, which is already widely used in the food industry due to its mild application but significant effects on the product. The mechanical activity of the ultrasound breaks the cell wall mechanically by the cavitation shear forces, and facilitates the transfer of phenolic and other compounds from the cell into the must. Also, the particle size reduction by the ultrasonic cavitation increases the surface area in contact between the solid and the liquid phase. High power ultrasounds have been used in the vinification of Monastrell grapes. Crushed grapes were treated with ultrasound, considering as variables the time the ultrasounds were applied to the crushed grapes (two different times were applied) and the duration of the fermentative skin maceration period (3, 6 or 8 days) and the results were compared with a control vinification, where grapes were not subjected to any treatment and were skin macerated during 8 days. The wine chromatic characteristics (determined spectrophotometrically) and the individual phenolic compounds (anthocyanins and tannins, determined by HPLC) were followed during all the maceration period, at the end of alcoholic fermentation and after three months in bottle. The wines made with ultrasound treated grapes presented differences with control wine, especially as regard total phenol content and tannin content, the wines with three days of maceration time presenting similar concentration of anthocyanins and twice the concentration of tannins than control wines with 8 days of maceration time. Other possible advantages of wines made with ultrasound treated grapes will be discussed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Encarna Gómez-Plaza*, Ana Andres-Grau, Ana Bautista-Ortín, Juan Iniesta, Ricardo Jurado, Salvador Terrades

*University of Murcia

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.