Macrowine 2021
IVES 9 IVES Conference Series 9 Application of high power ultrasounds during red wine vinification

Application of high power ultrasounds during red wine vinification

Abstract

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique. During traditional winemaking, grapes are crushed and skin macerated for several days, with pumps over to facilitate the color extraction. To increase this extraction, some chemical (maceration enzymes) or physical technologies (thermovinification, criomaceration, flash-expansion) can be applied. In this work, a new methodology has being tested. This methodology consists in the application of high power ultrasounds to crushed grapes to increase the extraction of phenolic compounds. Ultrasound is a non-thermal processing method, which is already widely used in the food industry due to its mild application but significant effects on the product. The mechanical activity of the ultrasound breaks the cell wall mechanically by the cavitation shear forces, and facilitates the transfer of phenolic and other compounds from the cell into the must. Also, the particle size reduction by the ultrasonic cavitation increases the surface area in contact between the solid and the liquid phase. High power ultrasounds have been used in the vinification of Monastrell grapes. Crushed grapes were treated with ultrasound, considering as variables the time the ultrasounds were applied to the crushed grapes (two different times were applied) and the duration of the fermentative skin maceration period (3, 6 or 8 days) and the results were compared with a control vinification, where grapes were not subjected to any treatment and were skin macerated during 8 days. The wine chromatic characteristics (determined spectrophotometrically) and the individual phenolic compounds (anthocyanins and tannins, determined by HPLC) were followed during all the maceration period, at the end of alcoholic fermentation and after three months in bottle. The wines made with ultrasound treated grapes presented differences with control wine, especially as regard total phenol content and tannin content, the wines with three days of maceration time presenting similar concentration of anthocyanins and twice the concentration of tannins than control wines with 8 days of maceration time. Other possible advantages of wines made with ultrasound treated grapes will be discussed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Encarna Gómez-Plaza*, Ana Andres-Grau, Ana Bautista-Ortín, Juan Iniesta, Ricardo Jurado, Salvador Terrades

*University of Murcia

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.