Macrowine 2021
IVES 9 IVES Conference Series 9 A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

Abstract

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”. Biotechnological products are now available for effective antimicrobial actions. Lysozyme inhibits the lactic acid bacteria. Chitosan also acts on the lactic acid bacteria but also efficiently on Brettanomyces. Acid sorbic can be a help to control the development of the undesirable strains yeast strains. On the antioxidant effect oak wood could potentially play a protective role. The development of an electrochemical sensor was used to estimate the influence of different cooperage factors on the antioxydant capacity(CaOx)suitable to be transmit by the wood at the wine. For red wines, during two successive vintages in two different wineries, tests compared classical post-MLF SO2 additions (5 g/hL) in classic new barrels to a treatment with a mixture of lysozyme and chitosan in CaOx optimized barrels. Microbiological monitoring has been done like chemical assays and wines tasted by expert panels. Barrels were also fitted with an innovative device allowing to measure dissolved oxygen without to have to open the barrel. In two different “Sauternes” wineries, test have been done to compare a classic mutage (between 10 and 25 g/hL of SO2) in classic barrels to a half a dose of SO2 and adding a supplement chitosan and sorbic acid in in CaOx optimized barrels. The impact on the microbial flora were investigated as well as the impact on the quality of wine. The innovative device for measuring dissolved oxygen was also used. All these wines were followed until the end of the harvest of breeding, ie on breeding periods of 6-18 months to understand the stability over time of the results. The results show that the test wines are microbiologically more stable than control wines. In the most of the case, always for the wine experiments and often for the “liqoureux”, the dissolved oxygen levels are also lower. Some metabolites (volatile phenols, diacetyl, and acetaldehyde) are less concentrated and colors are more intense and more stable. At the end, the combination of biotechnology tools and CAOX appears of a very efficient has emerged as a very effective technique to reduce the amount of total SO2 in wine as currently requested by consumers and by legislators.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Vincent Renouf*, Marie Mirabel

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.