Macrowine 2021
IVES 9 IVES Conference Series 9 A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines


In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”. Biotechnological products are now available for effective antimicrobial actions. Lysozyme inhibits the lactic acid bacteria. Chitosan also acts on the lactic acid bacteria but also efficiently on Brettanomyces. Acid sorbic can be a help to control the development of the undesirable strains yeast strains. On the antioxidant effect oak wood could potentially play a protective role. The development of an electrochemical sensor was used to estimate the influence of different cooperage factors on the antioxydant capacity(CaOx)suitable to be transmit by the wood at the wine. For red wines, during two successive vintages in two different wineries, tests compared classical post-MLF SO2 additions (5 g/hL) in classic new barrels to a treatment with a mixture of lysozyme and chitosan in CaOx optimized barrels. Microbiological monitoring has been done like chemical assays and wines tasted by expert panels. Barrels were also fitted with an innovative device allowing to measure dissolved oxygen without to have to open the barrel. In two different “Sauternes” wineries, test have been done to compare a classic mutage (between 10 and 25 g/hL of SO2) in classic barrels to a half a dose of SO2 and adding a supplement chitosan and sorbic acid in in CaOx optimized barrels. The impact on the microbial flora were investigated as well as the impact on the quality of wine. The innovative device for measuring dissolved oxygen was also used. All these wines were followed until the end of the harvest of breeding, ie on breeding periods of 6-18 months to understand the stability over time of the results. The results show that the test wines are microbiologically more stable than control wines. In the most of the case, always for the wine experiments and often for the “liqoureux”, the dissolved oxygen levels are also lower. Some metabolites (volatile phenols, diacetyl, and acetaldehyde) are less concentrated and colors are more intense and more stable. At the end, the combination of biotechnology tools and CAOX appears of a very efficient has emerged as a very effective technique to reduce the amount of total SO2 in wine as currently requested by consumers and by legislators.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster


Vincent Renouf*, Marie Mirabel

*Chêne & Cie

Contact the author


IVES Conference Series | Macrowine | Macrowine 2016


Related articles…

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.