Macrowine 2021
IVES 9 IVES Conference Series 9 Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Abstract

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex. In particular, the isolation and characterisation of polysaccharides and cell wall material (fibre) has shown that grape cell wall material (CWM) can bind tannins and modify the amount and type of tannins retained in wine. The action of enzymes, yeast and certain winemaking treatments on cell wall material can also profoundly influence the amount and types of polysaccharides retained in wine.These recent advances present new factors for consideration in grape selection and processing during winemaking which allow winemakers to more rigorously control colour and mouth-feel in red wines. This presentation with summarise recent studies in our laboratory that have focused on evaluating yeast strains and maceration processes during winemaking as tools to alter wine macromolecule concentration and composition. In wine made in the 2014 vintage it was found that the choice of yeast strain (10 yeast strains were benchmarked) resulted in highly variable polysaccharide and tannin concentrations. At the end of primary fermentation, the two yeasts which yielded highest wine tannin concentrations (1.5 g/L) resulted in wine with the lowest (0.45 g/L) and highest (0.66 g/L) polysaccharide concentrations respectively. It was found that the wine with the highest polysaccharide and tannin was associated with a transient release of pectic polysaccharides rich in galacturonic acid and arabinose from the grapes, suggesting pectolytic activity in yeast. Based on leads from this trial, in 2015 an experiment was performed to investigate the interactive effect of maceration time (7 vs 30 days), macerating enzyme and yeast strains (‘high-tannin’ vs ‘low-tannin’ yeast) on wine macromolecules in 50 kg Shiraz ferments. At 30 days, post maceration, no effect of yeast strain on polysaccharide concentration or composition was observed, although strong effects were found for enzyme application and maceration time. Results also show the combined use of yeast strain and maceration techniques can have a marked effect on wine tannin, but 30dM achieved the most significant shift in tannin concentration and molecular mass. The mechanisms by which these effects may occur will also be presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Paul Smith*, Chris Curtin, Keren Bindon, Mark Solomon, Stella Kassara

*The Australian Wine Research Institute

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.