Macrowine 2021
IVES 9 IVES Conference Series 9 Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Abstract

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex. In particular, the isolation and characterisation of polysaccharides and cell wall material (fibre) has shown that grape cell wall material (CWM) can bind tannins and modify the amount and type of tannins retained in wine. The action of enzymes, yeast and certain winemaking treatments on cell wall material can also profoundly influence the amount and types of polysaccharides retained in wine.These recent advances present new factors for consideration in grape selection and processing during winemaking which allow winemakers to more rigorously control colour and mouth-feel in red wines. This presentation with summarise recent studies in our laboratory that have focused on evaluating yeast strains and maceration processes during winemaking as tools to alter wine macromolecule concentration and composition. In wine made in the 2014 vintage it was found that the choice of yeast strain (10 yeast strains were benchmarked) resulted in highly variable polysaccharide and tannin concentrations. At the end of primary fermentation, the two yeasts which yielded highest wine tannin concentrations (1.5 g/L) resulted in wine with the lowest (0.45 g/L) and highest (0.66 g/L) polysaccharide concentrations respectively. It was found that the wine with the highest polysaccharide and tannin was associated with a transient release of pectic polysaccharides rich in galacturonic acid and arabinose from the grapes, suggesting pectolytic activity in yeast. Based on leads from this trial, in 2015 an experiment was performed to investigate the interactive effect of maceration time (7 vs 30 days), macerating enzyme and yeast strains (‘high-tannin’ vs ‘low-tannin’ yeast) on wine macromolecules in 50 kg Shiraz ferments. At 30 days, post maceration, no effect of yeast strain on polysaccharide concentration or composition was observed, although strong effects were found for enzyme application and maceration time. Results also show the combined use of yeast strain and maceration techniques can have a marked effect on wine tannin, but 30dM achieved the most significant shift in tannin concentration and molecular mass. The mechanisms by which these effects may occur will also be presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Paul Smith*, Chris Curtin, Keren Bindon, Mark Solomon, Stella Kassara

*The Australian Wine Research Institute

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).