Macrowine 2021
IVES 9 IVES Conference Series 9 Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Abstract

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex. In particular, the isolation and characterisation of polysaccharides and cell wall material (fibre) has shown that grape cell wall material (CWM) can bind tannins and modify the amount and type of tannins retained in wine. The action of enzymes, yeast and certain winemaking treatments on cell wall material can also profoundly influence the amount and types of polysaccharides retained in wine.These recent advances present new factors for consideration in grape selection and processing during winemaking which allow winemakers to more rigorously control colour and mouth-feel in red wines. This presentation with summarise recent studies in our laboratory that have focused on evaluating yeast strains and maceration processes during winemaking as tools to alter wine macromolecule concentration and composition. In wine made in the 2014 vintage it was found that the choice of yeast strain (10 yeast strains were benchmarked) resulted in highly variable polysaccharide and tannin concentrations. At the end of primary fermentation, the two yeasts which yielded highest wine tannin concentrations (1.5 g/L) resulted in wine with the lowest (0.45 g/L) and highest (0.66 g/L) polysaccharide concentrations respectively. It was found that the wine with the highest polysaccharide and tannin was associated with a transient release of pectic polysaccharides rich in galacturonic acid and arabinose from the grapes, suggesting pectolytic activity in yeast. Based on leads from this trial, in 2015 an experiment was performed to investigate the interactive effect of maceration time (7 vs 30 days), macerating enzyme and yeast strains (‘high-tannin’ vs ‘low-tannin’ yeast) on wine macromolecules in 50 kg Shiraz ferments. At 30 days, post maceration, no effect of yeast strain on polysaccharide concentration or composition was observed, although strong effects were found for enzyme application and maceration time. Results also show the combined use of yeast strain and maceration techniques can have a marked effect on wine tannin, but 30dM achieved the most significant shift in tannin concentration and molecular mass. The mechanisms by which these effects may occur will also be presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Paul Smith*, Chris Curtin, Keren Bindon, Mark Solomon, Stella Kassara

*The Australian Wine Research Institute

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.