Macrowine 2021
IVES 9 IVES Conference Series 9 Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Abstract

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex. In particular, the isolation and characterisation of polysaccharides and cell wall material (fibre) has shown that grape cell wall material (CWM) can bind tannins and modify the amount and type of tannins retained in wine. The action of enzymes, yeast and certain winemaking treatments on cell wall material can also profoundly influence the amount and types of polysaccharides retained in wine.These recent advances present new factors for consideration in grape selection and processing during winemaking which allow winemakers to more rigorously control colour and mouth-feel in red wines. This presentation with summarise recent studies in our laboratory that have focused on evaluating yeast strains and maceration processes during winemaking as tools to alter wine macromolecule concentration and composition. In wine made in the 2014 vintage it was found that the choice of yeast strain (10 yeast strains were benchmarked) resulted in highly variable polysaccharide and tannin concentrations. At the end of primary fermentation, the two yeasts which yielded highest wine tannin concentrations (1.5 g/L) resulted in wine with the lowest (0.45 g/L) and highest (0.66 g/L) polysaccharide concentrations respectively. It was found that the wine with the highest polysaccharide and tannin was associated with a transient release of pectic polysaccharides rich in galacturonic acid and arabinose from the grapes, suggesting pectolytic activity in yeast. Based on leads from this trial, in 2015 an experiment was performed to investigate the interactive effect of maceration time (7 vs 30 days), macerating enzyme and yeast strains (‘high-tannin’ vs ‘low-tannin’ yeast) on wine macromolecules in 50 kg Shiraz ferments. At 30 days, post maceration, no effect of yeast strain on polysaccharide concentration or composition was observed, although strong effects were found for enzyme application and maceration time. Results also show the combined use of yeast strain and maceration techniques can have a marked effect on wine tannin, but 30dM achieved the most significant shift in tannin concentration and molecular mass. The mechanisms by which these effects may occur will also be presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Paul Smith*, Chris Curtin, Keren Bindon, Mark Solomon, Stella Kassara

*The Australian Wine Research Institute

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.