Macrowine 2021
IVES 9 IVES Conference Series 9 Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Abstract

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex. In particular, the isolation and characterisation of polysaccharides and cell wall material (fibre) has shown that grape cell wall material (CWM) can bind tannins and modify the amount and type of tannins retained in wine. The action of enzymes, yeast and certain winemaking treatments on cell wall material can also profoundly influence the amount and types of polysaccharides retained in wine.These recent advances present new factors for consideration in grape selection and processing during winemaking which allow winemakers to more rigorously control colour and mouth-feel in red wines. This presentation with summarise recent studies in our laboratory that have focused on evaluating yeast strains and maceration processes during winemaking as tools to alter wine macromolecule concentration and composition. In wine made in the 2014 vintage it was found that the choice of yeast strain (10 yeast strains were benchmarked) resulted in highly variable polysaccharide and tannin concentrations. At the end of primary fermentation, the two yeasts which yielded highest wine tannin concentrations (1.5 g/L) resulted in wine with the lowest (0.45 g/L) and highest (0.66 g/L) polysaccharide concentrations respectively. It was found that the wine with the highest polysaccharide and tannin was associated with a transient release of pectic polysaccharides rich in galacturonic acid and arabinose from the grapes, suggesting pectolytic activity in yeast. Based on leads from this trial, in 2015 an experiment was performed to investigate the interactive effect of maceration time (7 vs 30 days), macerating enzyme and yeast strains (‘high-tannin’ vs ‘low-tannin’ yeast) on wine macromolecules in 50 kg Shiraz ferments. At 30 days, post maceration, no effect of yeast strain on polysaccharide concentration or composition was observed, although strong effects were found for enzyme application and maceration time. Results also show the combined use of yeast strain and maceration techniques can have a marked effect on wine tannin, but 30dM achieved the most significant shift in tannin concentration and molecular mass. The mechanisms by which these effects may occur will also be presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Paul Smith*, Chris Curtin, Keren Bindon, Mark Solomon, Stella Kassara

*The Australian Wine Research Institute

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.