Macrowine 2021
IVES 9 IVES Conference Series 9 The role of tomato juice serum in malolactic fermentation in wine

The role of tomato juice serum in malolactic fermentation in wine

Abstract

Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF. While the growth-inducing effect of tomato juice, the so-called ‘tomato juice factor’ (glycosylated pantothenic acid) on lactic acid bacteria in the culture medium without ethanol has been described a long time ago (Imamoto et al. 1972; Eto and Nakagawa 1975; Okada et al, 2000), still, the effect in high alcohol wine matrix remains to be elucidated. Aim: The aim of the current work was to study the possible role of TJF in inducing the malolactic conversion in wine. Materials and Methods: The synthetic grape must was fermented with EC-1118 wine yeast (Lalvin®, Lallemand Inc.) to the final ethanol concentration of 10-11%, pH 3.5 and glucose/fructose concentration of less than 3 g/L. The model wine was transferred into 100 ml fermenters and the whole freeze-dried tomato juice serum (TJS) or its molecular fractions obtained with size exclusion chromatography (SEC) were added. The wines were then inoculated with a commercial Oenococcus oeni strain VP41 (Lalvin®, Lallemand Inc.). The MLF was followed for 22 days and the conversion of malic acid to lactic acid was measured with HPLC. Glycosylated pantothenic acid was determined with indirect enzymatic method after hydrolysis of β-Glucosidase and liberated pantothenic acid was quantified by LC-MS. Results and Discussion: Our experiments showed that the addition of lyophilized TJS to model wine enabled to complete malolactic conversion in 18 days, while in control fermentation only 10 % of malic acid was consumed in the same time. The TJS was then fractionated using SEC and the effect of the collected fractions on MLF performance was tested using the same experimental setup. We observed the significant variation of MLF activity between different SEC fractions. The treatment of TJS with β-glucosidase revealed that from all pantothenic acid ~58% is glycosylated. These results suggest that TJS is a vital supplement, containing essential nutrients like glycosylated pantothenic acid for MLB, which results in quicker and more reliable MLF in wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Mary-Liis Kütt*, Ildar Nisamedtinov, Kaspar Kevvai, Triinu Kapp

*Competence Center of Food and Fermentation Technology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.