Macrowine 2021
IVES 9 IVES Conference Series 9 The role of tomato juice serum in malolactic fermentation in wine

The role of tomato juice serum in malolactic fermentation in wine

Abstract

Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF. While the growth-inducing effect of tomato juice, the so-called ‘tomato juice factor’ (glycosylated pantothenic acid) on lactic acid bacteria in the culture medium without ethanol has been described a long time ago (Imamoto et al. 1972; Eto and Nakagawa 1975; Okada et al, 2000), still, the effect in high alcohol wine matrix remains to be elucidated. Aim: The aim of the current work was to study the possible role of TJF in inducing the malolactic conversion in wine. Materials and Methods: The synthetic grape must was fermented with EC-1118 wine yeast (Lalvin®, Lallemand Inc.) to the final ethanol concentration of 10-11%, pH 3.5 and glucose/fructose concentration of less than 3 g/L. The model wine was transferred into 100 ml fermenters and the whole freeze-dried tomato juice serum (TJS) or its molecular fractions obtained with size exclusion chromatography (SEC) were added. The wines were then inoculated with a commercial Oenococcus oeni strain VP41 (Lalvin®, Lallemand Inc.). The MLF was followed for 22 days and the conversion of malic acid to lactic acid was measured with HPLC. Glycosylated pantothenic acid was determined with indirect enzymatic method after hydrolysis of β-Glucosidase and liberated pantothenic acid was quantified by LC-MS. Results and Discussion: Our experiments showed that the addition of lyophilized TJS to model wine enabled to complete malolactic conversion in 18 days, while in control fermentation only 10 % of malic acid was consumed in the same time. The TJS was then fractionated using SEC and the effect of the collected fractions on MLF performance was tested using the same experimental setup. We observed the significant variation of MLF activity between different SEC fractions. The treatment of TJS with β-glucosidase revealed that from all pantothenic acid ~58% is glycosylated. These results suggest that TJS is a vital supplement, containing essential nutrients like glycosylated pantothenic acid for MLB, which results in quicker and more reliable MLF in wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Mary-Liis Kütt*, Ildar Nisamedtinov, Kaspar Kevvai, Triinu Kapp

*Competence Center of Food and Fermentation Technology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.