Macrowine 2021
IVES 9 IVES Conference Series 9 The role of tomato juice serum in malolactic fermentation in wine

The role of tomato juice serum in malolactic fermentation in wine

Abstract

Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF. While the growth-inducing effect of tomato juice, the so-called ‘tomato juice factor’ (glycosylated pantothenic acid) on lactic acid bacteria in the culture medium without ethanol has been described a long time ago (Imamoto et al. 1972; Eto and Nakagawa 1975; Okada et al, 2000), still, the effect in high alcohol wine matrix remains to be elucidated. Aim: The aim of the current work was to study the possible role of TJF in inducing the malolactic conversion in wine. Materials and Methods: The synthetic grape must was fermented with EC-1118 wine yeast (Lalvin®, Lallemand Inc.) to the final ethanol concentration of 10-11%, pH 3.5 and glucose/fructose concentration of less than 3 g/L. The model wine was transferred into 100 ml fermenters and the whole freeze-dried tomato juice serum (TJS) or its molecular fractions obtained with size exclusion chromatography (SEC) were added. The wines were then inoculated with a commercial Oenococcus oeni strain VP41 (Lalvin®, Lallemand Inc.). The MLF was followed for 22 days and the conversion of malic acid to lactic acid was measured with HPLC. Glycosylated pantothenic acid was determined with indirect enzymatic method after hydrolysis of β-Glucosidase and liberated pantothenic acid was quantified by LC-MS. Results and Discussion: Our experiments showed that the addition of lyophilized TJS to model wine enabled to complete malolactic conversion in 18 days, while in control fermentation only 10 % of malic acid was consumed in the same time. The TJS was then fractionated using SEC and the effect of the collected fractions on MLF performance was tested using the same experimental setup. We observed the significant variation of MLF activity between different SEC fractions. The treatment of TJS with β-glucosidase revealed that from all pantothenic acid ~58% is glycosylated. These results suggest that TJS is a vital supplement, containing essential nutrients like glycosylated pantothenic acid for MLB, which results in quicker and more reliable MLF in wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Mary-Liis Kütt*, Ildar Nisamedtinov, Kaspar Kevvai, Triinu Kapp

*Competence Center of Food and Fermentation Technology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.