Macrowine 2021
IVES 9 IVES Conference Series 9 The role of tomato juice serum in malolactic fermentation in wine

The role of tomato juice serum in malolactic fermentation in wine

Abstract

Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF. While the growth-inducing effect of tomato juice, the so-called ‘tomato juice factor’ (glycosylated pantothenic acid) on lactic acid bacteria in the culture medium without ethanol has been described a long time ago (Imamoto et al. 1972; Eto and Nakagawa 1975; Okada et al, 2000), still, the effect in high alcohol wine matrix remains to be elucidated. Aim: The aim of the current work was to study the possible role of TJF in inducing the malolactic conversion in wine. Materials and Methods: The synthetic grape must was fermented with EC-1118 wine yeast (Lalvin®, Lallemand Inc.) to the final ethanol concentration of 10-11%, pH 3.5 and glucose/fructose concentration of less than 3 g/L. The model wine was transferred into 100 ml fermenters and the whole freeze-dried tomato juice serum (TJS) or its molecular fractions obtained with size exclusion chromatography (SEC) were added. The wines were then inoculated with a commercial Oenococcus oeni strain VP41 (Lalvin®, Lallemand Inc.). The MLF was followed for 22 days and the conversion of malic acid to lactic acid was measured with HPLC. Glycosylated pantothenic acid was determined with indirect enzymatic method after hydrolysis of β-Glucosidase and liberated pantothenic acid was quantified by LC-MS. Results and Discussion: Our experiments showed that the addition of lyophilized TJS to model wine enabled to complete malolactic conversion in 18 days, while in control fermentation only 10 % of malic acid was consumed in the same time. The TJS was then fractionated using SEC and the effect of the collected fractions on MLF performance was tested using the same experimental setup. We observed the significant variation of MLF activity between different SEC fractions. The treatment of TJS with β-glucosidase revealed that from all pantothenic acid ~58% is glycosylated. These results suggest that TJS is a vital supplement, containing essential nutrients like glycosylated pantothenic acid for MLB, which results in quicker and more reliable MLF in wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Mary-Liis Kütt*, Ildar Nisamedtinov, Kaspar Kevvai, Triinu Kapp

*Competence Center of Food and Fermentation Technology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.