Macrowine 2021
IVES 9 IVES Conference Series 9 The role of tomato juice serum in malolactic fermentation in wine

The role of tomato juice serum in malolactic fermentation in wine

Abstract

Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF. While the growth-inducing effect of tomato juice, the so-called ‘tomato juice factor’ (glycosylated pantothenic acid) on lactic acid bacteria in the culture medium without ethanol has been described a long time ago (Imamoto et al. 1972; Eto and Nakagawa 1975; Okada et al, 2000), still, the effect in high alcohol wine matrix remains to be elucidated. Aim: The aim of the current work was to study the possible role of TJF in inducing the malolactic conversion in wine. Materials and Methods: The synthetic grape must was fermented with EC-1118 wine yeast (Lalvin®, Lallemand Inc.) to the final ethanol concentration of 10-11%, pH 3.5 and glucose/fructose concentration of less than 3 g/L. The model wine was transferred into 100 ml fermenters and the whole freeze-dried tomato juice serum (TJS) or its molecular fractions obtained with size exclusion chromatography (SEC) were added. The wines were then inoculated with a commercial Oenococcus oeni strain VP41 (Lalvin®, Lallemand Inc.). The MLF was followed for 22 days and the conversion of malic acid to lactic acid was measured with HPLC. Glycosylated pantothenic acid was determined with indirect enzymatic method after hydrolysis of β-Glucosidase and liberated pantothenic acid was quantified by LC-MS. Results and Discussion: Our experiments showed that the addition of lyophilized TJS to model wine enabled to complete malolactic conversion in 18 days, while in control fermentation only 10 % of malic acid was consumed in the same time. The TJS was then fractionated using SEC and the effect of the collected fractions on MLF performance was tested using the same experimental setup. We observed the significant variation of MLF activity between different SEC fractions. The treatment of TJS with β-glucosidase revealed that from all pantothenic acid ~58% is glycosylated. These results suggest that TJS is a vital supplement, containing essential nutrients like glycosylated pantothenic acid for MLB, which results in quicker and more reliable MLF in wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Mary-Liis Kütt*, Ildar Nisamedtinov, Kaspar Kevvai, Triinu Kapp

*Competence Center of Food and Fermentation Technology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.