Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

Abstract

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic composition of the produced wines. A series of wood chips, originating from American, French, Slavonia oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples were analyzed one month after the end of malolactic fermentation, examining various chemical parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and ellagitannin content. Wines that were in contact with Acacia chips differ from the oak chips mainly due to their higher phenolic and tannin content as also their higher ellagictannins concentration. The mixture of American and French oak chips resulted in wines with lower colour intensity than the wines where the two woods were added separately. Slavonian oak resulted in wines with the highest colour intensity. Finally, the wood type did not affect the concentration of total anthocyanins in wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Kyraleou*, Eleni Tzanakouli, Kleopatra CHIRA, Marianthi Basalekou, Stamatina Kallithraka, Yorgos Kotseridis

*Agricultural University of Athens

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...