Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of Nitrogen and Sulphur foliar applications in hot climates

The effect of Nitrogen and Sulphur foliar applications in hot climates

Abstract

Vine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine. The purpose of this study was to determine the effect of different foliar fertilization (spray applications) on the chemical and sensory composition of Vitis vinifera L. cv. Sauvignon blanc and Chenin blanc musts and wines. A Sauvignon blanc plot in the Elgin area and a Chenin blanc plot in the Somerset West area (Western Cape, South Africa), with naturally low nitrogen status, were sprayed three weeks and one week prior véraison. Urea (10 kg/ha) was used for the nitrogen application (N), elemental micronized sulphur (5 kg/ha) for the sulphur application (S), and combined urea (10 kg/ha) and elemental micronized sulphur (5 kg/ha) were used for the sulphur and nitrogen application (N+S). The applications were sprayed on the foliage of the vines and the control received no applications. Analysis of YAN, non-volatile and volatile compounds, namely volatile thiols, major volatiles, fatty acids, esters, alcohols, monoterpenes, and glutathione were done to evaluate the differences between the treatments. Sensory evaluation was performed by expert tasters using a free sorting method at two different stages of aging (3 months and 9 months after bottling). The YAN levels in the grapes were higher in the N and N+S applications compared to the control. The wines produced from the S and N+S applications contained more 3-mercapto-hexanol (3MH) and 3-mercaptohexyl-acetate (3MHA) compounds. Therefore with sufficient nitrogen and sulphur in the vines there may be an increase in aromatic quality and ageing potential of the Sauvignon blanc and Chenin blanc vines.

References
Jreij, R. et al., 2009. Combined effects of soil-applied and foliar-applied nitrogen on the nitrogen composition and distribution in water stressed Vitis Vinifera L. cv Sauvignon blanc grapes. J. Int. Sci. Vigne Vin, 43(4), pp.179–187. Lacroux, F. et al., 2008. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. J Int Sci Vigne Vin, 42(3), pp.125–32.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Aleta Bruwer, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.