Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of Nitrogen and Sulphur foliar applications in hot climates

The effect of Nitrogen and Sulphur foliar applications in hot climates

Abstract

Vine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine. The purpose of this study was to determine the effect of different foliar fertilization (spray applications) on the chemical and sensory composition of Vitis vinifera L. cv. Sauvignon blanc and Chenin blanc musts and wines. A Sauvignon blanc plot in the Elgin area and a Chenin blanc plot in the Somerset West area (Western Cape, South Africa), with naturally low nitrogen status, were sprayed three weeks and one week prior véraison. Urea (10 kg/ha) was used for the nitrogen application (N), elemental micronized sulphur (5 kg/ha) for the sulphur application (S), and combined urea (10 kg/ha) and elemental micronized sulphur (5 kg/ha) were used for the sulphur and nitrogen application (N+S). The applications were sprayed on the foliage of the vines and the control received no applications. Analysis of YAN, non-volatile and volatile compounds, namely volatile thiols, major volatiles, fatty acids, esters, alcohols, monoterpenes, and glutathione were done to evaluate the differences between the treatments. Sensory evaluation was performed by expert tasters using a free sorting method at two different stages of aging (3 months and 9 months after bottling). The YAN levels in the grapes were higher in the N and N+S applications compared to the control. The wines produced from the S and N+S applications contained more 3-mercapto-hexanol (3MH) and 3-mercaptohexyl-acetate (3MHA) compounds. Therefore with sufficient nitrogen and sulphur in the vines there may be an increase in aromatic quality and ageing potential of the Sauvignon blanc and Chenin blanc vines.

References
Jreij, R. et al., 2009. Combined effects of soil-applied and foliar-applied nitrogen on the nitrogen composition and distribution in water stressed Vitis Vinifera L. cv Sauvignon blanc grapes. J. Int. Sci. Vigne Vin, 43(4), pp.179–187. Lacroux, F. et al., 2008. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. J Int Sci Vigne Vin, 42(3), pp.125–32.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Aleta Bruwer, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.