Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of Nitrogen and Sulphur foliar applications in hot climates

The effect of Nitrogen and Sulphur foliar applications in hot climates

Abstract

Vine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine. The purpose of this study was to determine the effect of different foliar fertilization (spray applications) on the chemical and sensory composition of Vitis vinifera L. cv. Sauvignon blanc and Chenin blanc musts and wines. A Sauvignon blanc plot in the Elgin area and a Chenin blanc plot in the Somerset West area (Western Cape, South Africa), with naturally low nitrogen status, were sprayed three weeks and one week prior véraison. Urea (10 kg/ha) was used for the nitrogen application (N), elemental micronized sulphur (5 kg/ha) for the sulphur application (S), and combined urea (10 kg/ha) and elemental micronized sulphur (5 kg/ha) were used for the sulphur and nitrogen application (N+S). The applications were sprayed on the foliage of the vines and the control received no applications. Analysis of YAN, non-volatile and volatile compounds, namely volatile thiols, major volatiles, fatty acids, esters, alcohols, monoterpenes, and glutathione were done to evaluate the differences between the treatments. Sensory evaluation was performed by expert tasters using a free sorting method at two different stages of aging (3 months and 9 months after bottling). The YAN levels in the grapes were higher in the N and N+S applications compared to the control. The wines produced from the S and N+S applications contained more 3-mercapto-hexanol (3MH) and 3-mercaptohexyl-acetate (3MHA) compounds. Therefore with sufficient nitrogen and sulphur in the vines there may be an increase in aromatic quality and ageing potential of the Sauvignon blanc and Chenin blanc vines.

References
Jreij, R. et al., 2009. Combined effects of soil-applied and foliar-applied nitrogen on the nitrogen composition and distribution in water stressed Vitis Vinifera L. cv Sauvignon blanc grapes. J. Int. Sci. Vigne Vin, 43(4), pp.179–187. Lacroux, F. et al., 2008. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. J Int Sci Vigne Vin, 42(3), pp.125–32.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Aleta Bruwer, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.