Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of Nitrogen and Sulphur foliar applications in hot climates

The effect of Nitrogen and Sulphur foliar applications in hot climates

Abstract

Vine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine. The purpose of this study was to determine the effect of different foliar fertilization (spray applications) on the chemical and sensory composition of Vitis vinifera L. cv. Sauvignon blanc and Chenin blanc musts and wines. A Sauvignon blanc plot in the Elgin area and a Chenin blanc plot in the Somerset West area (Western Cape, South Africa), with naturally low nitrogen status, were sprayed three weeks and one week prior véraison. Urea (10 kg/ha) was used for the nitrogen application (N), elemental micronized sulphur (5 kg/ha) for the sulphur application (S), and combined urea (10 kg/ha) and elemental micronized sulphur (5 kg/ha) were used for the sulphur and nitrogen application (N+S). The applications were sprayed on the foliage of the vines and the control received no applications. Analysis of YAN, non-volatile and volatile compounds, namely volatile thiols, major volatiles, fatty acids, esters, alcohols, monoterpenes, and glutathione were done to evaluate the differences between the treatments. Sensory evaluation was performed by expert tasters using a free sorting method at two different stages of aging (3 months and 9 months after bottling). The YAN levels in the grapes were higher in the N and N+S applications compared to the control. The wines produced from the S and N+S applications contained more 3-mercapto-hexanol (3MH) and 3-mercaptohexyl-acetate (3MHA) compounds. Therefore with sufficient nitrogen and sulphur in the vines there may be an increase in aromatic quality and ageing potential of the Sauvignon blanc and Chenin blanc vines.

References
Jreij, R. et al., 2009. Combined effects of soil-applied and foliar-applied nitrogen on the nitrogen composition and distribution in water stressed Vitis Vinifera L. cv Sauvignon blanc grapes. J. Int. Sci. Vigne Vin, 43(4), pp.179–187. Lacroux, F. et al., 2008. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. J Int Sci Vigne Vin, 42(3), pp.125–32.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Aleta Bruwer, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.