Macrowine 2021
IVES 9 IVES Conference Series 9 Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

Abstract

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions. The C-glucosidic ellagitannins, castalagin and vescalagin, were extracted and purified (>95% pure) from Quercus robur heartwood (Quideau, S., Varadinova, T., et al., 2004). The hemisynthesis of acutissimins A and B and epiacutissimins A and B (>95% pure) was performed in an acidic organic solution [1.5% (v/v) TFA/THF] at 60 °C (Quideau, S., Jourdes, M., et al, 2005). The concentrations in ellagitannins and flavano-ellagitannins of 85 samples from different zones of Bordeaux and 100 wines from La Rioja were analyse by HPLC-DAD-MS after their extraction by a solid phase extraction (SPE) methodology using a column with TSK HW 50F gel. The average concentration of the sum of ellagitannins from Bordeaux samples was practically the double, 5.357 mg/L comparing with La Rioja ellagitannins sum average in wines, 3.022 mg/L. A panel of eighteen judges, trained with aqueous solutions of quinine sulfate (0.25 g/L), aluminium sulfate (3 g/L) and sucrose (4 g/L) to set bitterness, astringency and sweetness, took part in this sensory study. This panel passed different triangular tests using castalagin, vescalagin and a mixture of 8 ellagitannins with increasing concentrations in order to determine the concentration thresholds at two different pH values, pH 4.5 and pH 3.5, as in wine model solution and in a Merlot red wine with scarcity on ellagitannins. As a result, the castalagin astringency threshold was determined to correspond to a concentration of 5.7 mg/L at pH 4.5, whereas the same compound in the same aqueous solution adjusted at pH 3.5 has its astringency threshold at 9.2 mg/L.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Zuriñe Rasines-Perea*, Michael Jourdes, Pierre-Louis Teissedre, Rémi Jacquet, Stéphane Quideau

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.