Macrowine 2021
IVES 9 IVES Conference Series 9 Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

Abstract

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine. The exchangeable cations in its lamellar structures strongly influence some properties, like, for instance, the specific surface, the exchange capacity, as well as the adsorption behaviour. The interactions with haze forming proteins, other colloids, as well as aroma compounds and polyphenols would have been to discover as the modulation of wine colloids by an adjuvant severely affects the wine sensory profile. Body Oenologists do not really know on which parameters they have to focus for the choice of the bentonite targeted at gaining both the desired degree of limpidity and stability coupled with the avoiding of undesirable side effects. In this field, the authors have carried out many scientific and technical activities that led to detect: -The proteins targeted by the bentonite; -The endogenous allergenic wine compounds that are removed by bentonite; -The effect of protein origin, content, and pH toward wine colloidal (heat) stability; -The bentonite optimization for red wine fining; -The bentonite side effects on polyphenols and colour; -The interactions with the free- and glycosylated-varietal aroma in musts and wines; -The removal of fermentative aroma according to the wine aging, colloids and protein content; -The adsorption mechanism and modelling of wine aroma compounds onto bentonite. Conclusion The role of bentonite added to settling juices and/or to fining wine was not fully clear. This work collects several studies from authors focusing on the impact of several commercial bentonite samples, used for both juice clarification and wine fining, on the colloids, proteins, polyphenols and aroma compounds of white and red wines. Some parameters of practical value, such as the heat-stability of colloids, the concentration of total and haze-forming proteins, the content of the most relevant varietal and fermentative aroma were assessed to track bentonite effects and to achieve findings that are immediately applicable in the field of oenology.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Milena Lambri*, Dante Marco De Faveri, Donato Colangelo, Fabrizio Torchio

*UCSC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.