Macrowine 2021
IVES 9 IVES Conference Series 9 Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Abstract

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique. During alcoholic fermentation, Saccharomyces cerevisiae metabolism modifies to different extent the native concentration of glutathione in must, depending on the strain. In this study, the evolution of the glutathione content during three spontaneous alcoholic fermentations of Sangiovese grapes (vintage 2015), carried out at commercial-scale in a winery located in Val d’Orcia (Tuscany), was monitored. From a microbiological point of view, S. cerevisiae dominated all the fermentation phases, since non-Saccharomyces yeast did not reach significant population densities. However, a great intraspecific genetic diversity was found within the S. cerevisiae populations. In freshly pressed musts, glutathione concentration ranged from 4 to 7mg/L, and consisted predominantly of the oxidized form. During alcoholic fermentation, glutathione concentration resulted highly variable: in the first days, in correspondence of yeast exponential growth phase, it decreased, possibly due to the consumption of glutathione by yeast cells in the active growth phase; successively, glutathione content increased until the end of alcoholic fermentation, suggesting a glutathione release from yeast cells in correspondence to cell autolysis into the wine; at the end of alcoholic fermentation, glutathione contents of wines ranged from 19 to 23mg/L, and the reduced form represented about 60% of the total. The results suggest that the final glutathione concentration in wine is mostly dependent on the amount of glutathione released by yeast cells rather than on that derived from grapes at the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Mangani*, Eleonora Mari, Giacomo Buscioni, Martina Cerretelli, Massimo Vincenzini, Simona Guerrini, Yuri Romboli

*Food Micro Team

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.