Macrowine 2021
IVES 9 IVES Conference Series 9 Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Abstract

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique. During alcoholic fermentation, Saccharomyces cerevisiae metabolism modifies to different extent the native concentration of glutathione in must, depending on the strain. In this study, the evolution of the glutathione content during three spontaneous alcoholic fermentations of Sangiovese grapes (vintage 2015), carried out at commercial-scale in a winery located in Val d’Orcia (Tuscany), was monitored. From a microbiological point of view, S. cerevisiae dominated all the fermentation phases, since non-Saccharomyces yeast did not reach significant population densities. However, a great intraspecific genetic diversity was found within the S. cerevisiae populations. In freshly pressed musts, glutathione concentration ranged from 4 to 7mg/L, and consisted predominantly of the oxidized form. During alcoholic fermentation, glutathione concentration resulted highly variable: in the first days, in correspondence of yeast exponential growth phase, it decreased, possibly due to the consumption of glutathione by yeast cells in the active growth phase; successively, glutathione content increased until the end of alcoholic fermentation, suggesting a glutathione release from yeast cells in correspondence to cell autolysis into the wine; at the end of alcoholic fermentation, glutathione contents of wines ranged from 19 to 23mg/L, and the reduced form represented about 60% of the total. The results suggest that the final glutathione concentration in wine is mostly dependent on the amount of glutathione released by yeast cells rather than on that derived from grapes at the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Mangani*, Eleonora Mari, Giacomo Buscioni, Martina Cerretelli, Massimo Vincenzini, Simona Guerrini, Yuri Romboli

*Food Micro Team

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].