Macrowine 2021
IVES 9 IVES Conference Series 9 Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Abstract

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique. During alcoholic fermentation, Saccharomyces cerevisiae metabolism modifies to different extent the native concentration of glutathione in must, depending on the strain. In this study, the evolution of the glutathione content during three spontaneous alcoholic fermentations of Sangiovese grapes (vintage 2015), carried out at commercial-scale in a winery located in Val d’Orcia (Tuscany), was monitored. From a microbiological point of view, S. cerevisiae dominated all the fermentation phases, since non-Saccharomyces yeast did not reach significant population densities. However, a great intraspecific genetic diversity was found within the S. cerevisiae populations. In freshly pressed musts, glutathione concentration ranged from 4 to 7mg/L, and consisted predominantly of the oxidized form. During alcoholic fermentation, glutathione concentration resulted highly variable: in the first days, in correspondence of yeast exponential growth phase, it decreased, possibly due to the consumption of glutathione by yeast cells in the active growth phase; successively, glutathione content increased until the end of alcoholic fermentation, suggesting a glutathione release from yeast cells in correspondence to cell autolysis into the wine; at the end of alcoholic fermentation, glutathione contents of wines ranged from 19 to 23mg/L, and the reduced form represented about 60% of the total. The results suggest that the final glutathione concentration in wine is mostly dependent on the amount of glutathione released by yeast cells rather than on that derived from grapes at the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Mangani*, Eleonora Mari, Giacomo Buscioni, Martina Cerretelli, Massimo Vincenzini, Simona Guerrini, Yuri Romboli

*Food Micro Team

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).