Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Abstract

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water. The treatments were applied to grapevine twice, at veraison and one week later, and for each application, 200 mL/plant were sprayed over leaves. The treatments were carried out in triplicate and were arranged in a complete randomized block design. Grape volatile composition (terpenes, C13 norisoprenoids, esters, benzenoids, and C6 compounds) was determined by HS-SPME-GC-MS. The statistical analysis was performed by ANOVA, considering grape volatile compounds as dependent variables and treatment and vintage as categorical factors. The results showed that the grape volatile content was different for each year. Regarding treatment factor, in the first year of study, foliar application of MeJ positively affected the presence of p-cymene, methyl jasmonate, and hexanal, and negatively to the content of 2-hexen-1-ol acetate, (z)-3-hexen-1-ol, and n-hexanol; the rest of the compounds were unaffected by the treatment. However, in the second year, the application of MeJ to grapevine showed a greater influence on the presence of volatile compounds in grape. The formation of all terpenes, with the exception of p-cymene, was negatively affected by the MeJ foliar application. For C13 norisoprenoids, the effect of the treatment was also negative for
norisoprenoids was unaffected by the MeJ treatment. Likewise, the grape level of esters and benzenoids was also negatively affected by the MeJ treatment. Finally, the MeJ treatment increased the presence of n-hexanol while (z)-3-hexen-1-ol was reduced; for the remaining C6 compounds no effect of the MeJ treatment was observed. It is noteworthy that the influence of the MeJ foliar application was positive for the grape volatile composition in the third year of study. The foliar application of MeJ favoured the synthesis of ten volatile compounds that are considered positive for grape aroma, while the rest of the positive compounds were unaffected, with the exception of geranyl acetone. In conclusion, grape volatile content and the effect of MeJ foliar application on it were dependent on the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Elisa Baroja, Javier Portu, Pilar Santamaría, Rosa López

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.