Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Abstract

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water. The treatments were applied to grapevine twice, at veraison and one week later, and for each application, 200 mL/plant were sprayed over leaves. The treatments were carried out in triplicate and were arranged in a complete randomized block design. Grape volatile composition (terpenes, C13 norisoprenoids, esters, benzenoids, and C6 compounds) was determined by HS-SPME-GC-MS. The statistical analysis was performed by ANOVA, considering grape volatile compounds as dependent variables and treatment and vintage as categorical factors. The results showed that the grape volatile content was different for each year. Regarding treatment factor, in the first year of study, foliar application of MeJ positively affected the presence of p-cymene, methyl jasmonate, and hexanal, and negatively to the content of 2-hexen-1-ol acetate, (z)-3-hexen-1-ol, and n-hexanol; the rest of the compounds were unaffected by the treatment. However, in the second year, the application of MeJ to grapevine showed a greater influence on the presence of volatile compounds in grape. The formation of all terpenes, with the exception of p-cymene, was negatively affected by the MeJ foliar application. For C13 norisoprenoids, the effect of the treatment was also negative for
norisoprenoids was unaffected by the MeJ treatment. Likewise, the grape level of esters and benzenoids was also negatively affected by the MeJ treatment. Finally, the MeJ treatment increased the presence of n-hexanol while (z)-3-hexen-1-ol was reduced; for the remaining C6 compounds no effect of the MeJ treatment was observed. It is noteworthy that the influence of the MeJ foliar application was positive for the grape volatile composition in the third year of study. The foliar application of MeJ favoured the synthesis of ten volatile compounds that are considered positive for grape aroma, while the rest of the positive compounds were unaffected, with the exception of geranyl acetone. In conclusion, grape volatile content and the effect of MeJ foliar application on it were dependent on the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Elisa Baroja, Javier Portu, Pilar Santamaría, Rosa López

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.