Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Abstract

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water. The treatments were applied to grapevine twice, at veraison and one week later, and for each application, 200 mL/plant were sprayed over leaves. The treatments were carried out in triplicate and were arranged in a complete randomized block design. Grape volatile composition (terpenes, C13 norisoprenoids, esters, benzenoids, and C6 compounds) was determined by HS-SPME-GC-MS. The statistical analysis was performed by ANOVA, considering grape volatile compounds as dependent variables and treatment and vintage as categorical factors. The results showed that the grape volatile content was different for each year. Regarding treatment factor, in the first year of study, foliar application of MeJ positively affected the presence of p-cymene, methyl jasmonate, and hexanal, and negatively to the content of 2-hexen-1-ol acetate, (z)-3-hexen-1-ol, and n-hexanol; the rest of the compounds were unaffected by the treatment. However, in the second year, the application of MeJ to grapevine showed a greater influence on the presence of volatile compounds in grape. The formation of all terpenes, with the exception of p-cymene, was negatively affected by the MeJ foliar application. For C13 norisoprenoids, the effect of the treatment was also negative for
norisoprenoids was unaffected by the MeJ treatment. Likewise, the grape level of esters and benzenoids was also negatively affected by the MeJ treatment. Finally, the MeJ treatment increased the presence of n-hexanol while (z)-3-hexen-1-ol was reduced; for the remaining C6 compounds no effect of the MeJ treatment was observed. It is noteworthy that the influence of the MeJ foliar application was positive for the grape volatile composition in the third year of study. The foliar application of MeJ favoured the synthesis of ten volatile compounds that are considered positive for grape aroma, while the rest of the positive compounds were unaffected, with the exception of geranyl acetone. In conclusion, grape volatile content and the effect of MeJ foliar application on it were dependent on the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Elisa Baroja, Javier Portu, Pilar Santamaría, Rosa López

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.