Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

Abstract

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water. The treatments were applied to grapevine twice, at veraison and one week later, and for each application, 200 mL/plant were sprayed over leaves. The treatments were carried out in triplicate and were arranged in a complete randomized block design. Grape volatile composition (terpenes, C13 norisoprenoids, esters, benzenoids, and C6 compounds) was determined by HS-SPME-GC-MS. The statistical analysis was performed by ANOVA, considering grape volatile compounds as dependent variables and treatment and vintage as categorical factors. The results showed that the grape volatile content was different for each year. Regarding treatment factor, in the first year of study, foliar application of MeJ positively affected the presence of p-cymene, methyl jasmonate, and hexanal, and negatively to the content of 2-hexen-1-ol acetate, (z)-3-hexen-1-ol, and n-hexanol; the rest of the compounds were unaffected by the treatment. However, in the second year, the application of MeJ to grapevine showed a greater influence on the presence of volatile compounds in grape. The formation of all terpenes, with the exception of p-cymene, was negatively affected by the MeJ foliar application. For C13 norisoprenoids, the effect of the treatment was also negative for
norisoprenoids was unaffected by the MeJ treatment. Likewise, the grape level of esters and benzenoids was also negatively affected by the MeJ treatment. Finally, the MeJ treatment increased the presence of n-hexanol while (z)-3-hexen-1-ol was reduced; for the remaining C6 compounds no effect of the MeJ treatment was observed. It is noteworthy that the influence of the MeJ foliar application was positive for the grape volatile composition in the third year of study. The foliar application of MeJ favoured the synthesis of ten volatile compounds that are considered positive for grape aroma, while the rest of the positive compounds were unaffected, with the exception of geranyl acetone. In conclusion, grape volatile content and the effect of MeJ foliar application on it were dependent on the vintage.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Elisa Baroja, Javier Portu, Pilar Santamaría, Rosa López

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.