GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Untangling belowground response of grapevines to cover crop competition

Untangling belowground response of grapevines to cover crop competition

Abstract

Context and purpose of the study ‐ Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth, and improved fruit quality. In humid climates where inter‐row cover crops are standard management, we evaluated under‐ vine cover crops for beneficial reductions in vegetative growth. Several factors affect the impact of under‐vine cover crops on vine growth and productivity, including seasonal resource availability, vine age, and rootstock. To better understand these factors, we examined belowground processes that might clarify mechanisms of resource competition between grapevines and cover crops.

Material and methods ‐ Field examinations of mature vinifera and young inter‐specific hybrid grapevines grafted on two rootstocks varying in vigor, Riparia (Vitis riparia) and 101‐14 Mgt (Vitis riparia x Vitis rupestris), were conducted at three humid, eastern US vineyards. Both destructive (soil coring) and non‐destructive (minirhizotron technique) methods were used for root observations and analysis.

Results ‐ Roots of young and mature vines coped with under‐vine cover crop competition by avoiding shallow soil regions mainly colonized by cover crops roots, suggesting complementary use of water and nutrients. In mature vines, cover crop competition also induced shorter lifespan of grapevine roots, but did not affect root morphological traits, such as specific root length, diameter, mycorrhizal fungal colonization, and root branching. In contrast, young grapevine root systems responded to competition by increasing specific root length and decreasing absorptive root diameter, regardless of the rootstock. Although rootstocks displayed a similar belowground response, young vines grafted on the low‐vigor rootstock exhibited less growth reduction during the first year suggesting that tolerance of cover crop competition may be rootstock dependent. Overall, young grapevines growing with cover crops tended to have greater reductions in growth compared to mature vines, suggesting that vines acclimate to competition over multiple years.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Michela CENTINARI (1), David EISSENSTAT (2), Suzanne FLEISHMAN (1,2), Anne KLODD (1,2,4), Taryn BAUERLE (5)

(1) Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
(2) Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
(4) Current affiliation: University of Minnesota, Andover, MN, USA
(5) School of Integrative Plant Science, Cornell University, Ithaca, NY, USA

Contact the author

Keywords

Cover crops, plasticity, root distribution, Vitis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.