terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Abstract

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).

Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing. Each juice had been clarified with and without pectolytic enzymes and spiked with different levels of grape solids and diammonium phosphate. The purpose of this experiment plan was to create four modalities with different nitrogen / lipids balances. These musts were fermented in laboratory normalized conditions. In addition of oenological analysis, free fatty acid and sterol were quantified in grape juices. After fermentation, varietal thiols, ethyl esters, higher alcohols and their acetates have been quantified.

Results showed that the nitrogen / lipids balance of grape must affect the concentration of aromatic compounds in wine, especially on the bioconversion of higher alcohols and 3-sulfanylhexanol into their acetates. Nitrogen supplementation was thus confirmed as having a positive effect on the yeast to ester acetates production. However, for the same level of nitrogen, lipids concentration may modulate ester acetates. More generally, a positive correlation has been observed between the nitrogen / lipids ratio and quantity of ester acetates in wine. Linear relation appeared between this nitrogen / lipids ratio and acetates / higher alcohols ratio.

Consequently, the nitrogen / lipids ratio seems to be a useful indicator for the winemaker to better control the desired aroma balance in white wines.

 

1. Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.-M.; Dequin, S.; Mouret, J.-R.  Appl. Microbiol. Biotechnol. 2015, 99, 2291-2304.
2. Casalta, E.; Salmon, J.-M.; Picou, C.; Sablayrolles, J.-M.; Am. J. Enol. Vitic. 2019, 70 (2), 147-153.
3. Caboulet D., Roy A., Ducasse M.A., Cottereau P., Solanet D., Dagan L., Silvano A., Ortiz-jumien A. et Schneider R. (2013). Rev. des Oen. 2013, 149 S, 26-28.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Frederic Charrier1, Stephane Delpech², Laurent Dagan², Erik Casalta³, Jean-Roch Mouret³ et Philippe Cottereau⁴

1. Institut Français de la Vigne et du Vin, Château de la Frémoire, 44 120 Vertou
2. Nyseos, 53 rue Claude François, 34 080 Montpellier
3. Inrae SPO, 2 place Viala, 34 060 Montpellier
4. Institut Français de la Vigne et du Vin, 7 avenue Yves Cazeaux, 30 230 Rodhilan

Contact the author*

Keywords

white must, nitrogen, lipids, esters

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.