terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Abstract

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).

Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing. Each juice had been clarified with and without pectolytic enzymes and spiked with different levels of grape solids and diammonium phosphate. The purpose of this experiment plan was to create four modalities with different nitrogen / lipids balances. These musts were fermented in laboratory normalized conditions. In addition of oenological analysis, free fatty acid and sterol were quantified in grape juices. After fermentation, varietal thiols, ethyl esters, higher alcohols and their acetates have been quantified.

Results showed that the nitrogen / lipids balance of grape must affect the concentration of aromatic compounds in wine, especially on the bioconversion of higher alcohols and 3-sulfanylhexanol into their acetates. Nitrogen supplementation was thus confirmed as having a positive effect on the yeast to ester acetates production. However, for the same level of nitrogen, lipids concentration may modulate ester acetates. More generally, a positive correlation has been observed between the nitrogen / lipids ratio and quantity of ester acetates in wine. Linear relation appeared between this nitrogen / lipids ratio and acetates / higher alcohols ratio.

Consequently, the nitrogen / lipids ratio seems to be a useful indicator for the winemaker to better control the desired aroma balance in white wines.

 

1. Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.-M.; Dequin, S.; Mouret, J.-R.  Appl. Microbiol. Biotechnol. 2015, 99, 2291-2304.
2. Casalta, E.; Salmon, J.-M.; Picou, C.; Sablayrolles, J.-M.; Am. J. Enol. Vitic. 2019, 70 (2), 147-153.
3. Caboulet D., Roy A., Ducasse M.A., Cottereau P., Solanet D., Dagan L., Silvano A., Ortiz-jumien A. et Schneider R. (2013). Rev. des Oen. 2013, 149 S, 26-28.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Frederic Charrier1, Stephane Delpech², Laurent Dagan², Erik Casalta³, Jean-Roch Mouret³ et Philippe Cottereau⁴

1. Institut Français de la Vigne et du Vin, Château de la Frémoire, 44 120 Vertou
2. Nyseos, 53 rue Claude François, 34 080 Montpellier
3. Inrae SPO, 2 place Viala, 34 060 Montpellier
4. Institut Français de la Vigne et du Vin, 7 avenue Yves Cazeaux, 30 230 Rodhilan

Contact the author*

Keywords

white must, nitrogen, lipids, esters

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.