Macrowine 2021
IVES 9 IVES Conference Series 9 Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

Abstract

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design. The multivariate data analysis on the glycan microarray (CoMPP) and gas chromatography (GC) datat revealed that the pectin lyase performed as effectively as commercial enzyme preparations in de-pectination of berry cell walls, and the combination of endo-polygalacturonase and pectin methyl esterase did not degrade the pectin as we predicted, but rather unraveled it.The combinations that contained other enzymes were shown to degrade side chains, but not de-pectinate and de-polymerise, also provided useful and new information on the complexity of the grape berry cell wall architecture. By adding the information acquired from this study to previous berry cell wall studies, a hypothetical model describing cell wall structure of different tissue types of grape berry was established. This model can aid us in a number of future studies apart from winemaking, such as fruit development and ripening and plant pathogen interactions of grapes. Most importantly it provides testable hypotheses for future studies on grape berry deconstruction using wine enzymes tailored for specific applications in winemaking.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yu Gao*, John Paul Moore, Jonatan Fangel, Melane Vivier, William Willats

*Institute for Wine Biotechnology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.