Macrowine 2021
IVES 9 IVES Conference Series 9 Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Abstract

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life. The main goal of this research was to identify key aroma compounds involved in “overripened” red wines with an intense prune, cooked fruit aroma. Gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS) was used in order to find odorant zones (OZ) and identify volatile compounds responsible for the cooked fruit aroma in Merlot and Cabernet Sauvignon (CS) grapes. As a result, several OZ of cooked fruits were highlighted and identified by GC-MS. The analysis of many musts and wines marked or not by dried fruit flavors showed that furaneol (caramel), γ-nonalactone (coconut, cooked peach) and (Z)-1,5-octadien-3-one (geranium) play a role in this aroma. Furaneol and γ-nonalactone are well-known compounds in wines. On the contrary, the influence of (Z)-1,5-octadien-3-one is reported for the first time in musts from healthy grapes. A first quantification method of this ketone using SPME-GC-CI-MS was also validated in terms of repeatability, linearity and limits of detection. Perception thresholds in model solution were determined: 0.0022 ng/L in model solution of must, 9 ng/L in Merlot must and 1.2 ng/L in wine model solution. This compound, which is reminiscent of geranium, is extremely intense. Its quantification was performed in musts marked or not by dried fruit flavors. Its concentration in musts marked by these flavors can reach 80 ng/L. The correlation between the concentration of these compounds including (Z)-1,5-octadien-3-one, furaneol and γ-nonalactone and their sensory analysis is described. The details of this study and the consequences of the level and distribution of these compounds in musts and wines on the determination of factors (harvest date, light, vine) associated with their formation are also presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Allamy Lucile*, Darriet Philippe, Pons Alexandre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).