Macrowine 2021
IVES 9 IVES Conference Series 9 Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Abstract

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life. The main goal of this research was to identify key aroma compounds involved in “overripened” red wines with an intense prune, cooked fruit aroma. Gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS) was used in order to find odorant zones (OZ) and identify volatile compounds responsible for the cooked fruit aroma in Merlot and Cabernet Sauvignon (CS) grapes. As a result, several OZ of cooked fruits were highlighted and identified by GC-MS. The analysis of many musts and wines marked or not by dried fruit flavors showed that furaneol (caramel), γ-nonalactone (coconut, cooked peach) and (Z)-1,5-octadien-3-one (geranium) play a role in this aroma. Furaneol and γ-nonalactone are well-known compounds in wines. On the contrary, the influence of (Z)-1,5-octadien-3-one is reported for the first time in musts from healthy grapes. A first quantification method of this ketone using SPME-GC-CI-MS was also validated in terms of repeatability, linearity and limits of detection. Perception thresholds in model solution were determined: 0.0022 ng/L in model solution of must, 9 ng/L in Merlot must and 1.2 ng/L in wine model solution. This compound, which is reminiscent of geranium, is extremely intense. Its quantification was performed in musts marked or not by dried fruit flavors. Its concentration in musts marked by these flavors can reach 80 ng/L. The correlation between the concentration of these compounds including (Z)-1,5-octadien-3-one, furaneol and γ-nonalactone and their sensory analysis is described. The details of this study and the consequences of the level and distribution of these compounds in musts and wines on the determination of factors (harvest date, light, vine) associated with their formation are also presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Allamy Lucile*, Darriet Philippe, Pons Alexandre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.