Macrowine 2021
IVES 9 IVES Conference Series 9 Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Abstract

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life. The main goal of this research was to identify key aroma compounds involved in “overripened” red wines with an intense prune, cooked fruit aroma. Gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS) was used in order to find odorant zones (OZ) and identify volatile compounds responsible for the cooked fruit aroma in Merlot and Cabernet Sauvignon (CS) grapes. As a result, several OZ of cooked fruits were highlighted and identified by GC-MS. The analysis of many musts and wines marked or not by dried fruit flavors showed that furaneol (caramel), γ-nonalactone (coconut, cooked peach) and (Z)-1,5-octadien-3-one (geranium) play a role in this aroma. Furaneol and γ-nonalactone are well-known compounds in wines. On the contrary, the influence of (Z)-1,5-octadien-3-one is reported for the first time in musts from healthy grapes. A first quantification method of this ketone using SPME-GC-CI-MS was also validated in terms of repeatability, linearity and limits of detection. Perception thresholds in model solution were determined: 0.0022 ng/L in model solution of must, 9 ng/L in Merlot must and 1.2 ng/L in wine model solution. This compound, which is reminiscent of geranium, is extremely intense. Its quantification was performed in musts marked or not by dried fruit flavors. Its concentration in musts marked by these flavors can reach 80 ng/L. The correlation between the concentration of these compounds including (Z)-1,5-octadien-3-one, furaneol and γ-nonalactone and their sensory analysis is described. The details of this study and the consequences of the level and distribution of these compounds in musts and wines on the determination of factors (harvest date, light, vine) associated with their formation are also presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Allamy Lucile*, Darriet Philippe, Pons Alexandre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.