Macrowine 2021
IVES 9 IVES Conference Series 9 Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

Abstract

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2. However, the biosynthetic pathway of (-)-rotundone in grapevine has been unclarified to date. In this study, we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (-)-rotundone in the grape cultivar Syrah6. It is a cytochrome P450 (CYP) belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 generated (-)-rotundone as the major reaction product with α-guaiene, and presumably (2R)-rotundol and (2S)-rotundol as the intermediate compounds to synthesize (-)-rotundone were found at trace levels in vitro enzyme assay. This result suggests that this enzyme can catalyze a one-step oxidation of α-guaiene to (-)-rotundone or a two-step oxidation via a rapid second oxidation from (2R)-rotundol and (2S)-rotundol to (-)-rotundone. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (-)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (-)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (-)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (-)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. [References] [1] Wood, C., et al. 2008. J. Agric. Food Chem. 56, 3738-44. [2] Geffroy, O., et al. 2014. Aust. J. Grape Wine Res. 20, 401-408. [3] Mattivi, F., et al. 2011. Rapid Commun. Mass Spectrom. 25, 483-8. [4] Caputi, L., et al. 2011. J. Agric. Food Chem. 59, 5565-71. [5] Scarlett, N.J., et al. 2014. Aust. J. Grape Wine Res. 20, 214-222. [6] Takase, H., et al. 2015. J. Exp. Bot, in press.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Hideki Takase*, Akira Shinohara, Akira Shinohara, Gen Ikoma, Hideyuki Shinmori, Hironori Kobayashi, Hironori Matsuo, Hiroshi Saito, Kanako Sasaki, Ryoji Takata

*Research Laboratories for Wine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.