Macrowine 2021
IVES 9 IVES Conference Series 9 Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

Abstract

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2. However, the biosynthetic pathway of (-)-rotundone in grapevine has been unclarified to date. In this study, we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (-)-rotundone in the grape cultivar Syrah6. It is a cytochrome P450 (CYP) belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 generated (-)-rotundone as the major reaction product with α-guaiene, and presumably (2R)-rotundol and (2S)-rotundol as the intermediate compounds to synthesize (-)-rotundone were found at trace levels in vitro enzyme assay. This result suggests that this enzyme can catalyze a one-step oxidation of α-guaiene to (-)-rotundone or a two-step oxidation via a rapid second oxidation from (2R)-rotundol and (2S)-rotundol to (-)-rotundone. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (-)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (-)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (-)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (-)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. [References] [1] Wood, C., et al. 2008. J. Agric. Food Chem. 56, 3738-44. [2] Geffroy, O., et al. 2014. Aust. J. Grape Wine Res. 20, 401-408. [3] Mattivi, F., et al. 2011. Rapid Commun. Mass Spectrom. 25, 483-8. [4] Caputi, L., et al. 2011. J. Agric. Food Chem. 59, 5565-71. [5] Scarlett, N.J., et al. 2014. Aust. J. Grape Wine Res. 20, 214-222. [6] Takase, H., et al. 2015. J. Exp. Bot, in press.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Hideki Takase*, Akira Shinohara, Akira Shinohara, Gen Ikoma, Hideyuki Shinmori, Hironori Kobayashi, Hironori Matsuo, Hiroshi Saito, Kanako Sasaki, Ryoji Takata

*Research Laboratories for Wine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.