Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Abstract

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines. The toasting method of the barrel influenced significantly the ellagitannin composition of both wine modalities. In the case of MT toasting, wines fermented in stainless steel tanks showed higher ellagitannin content than barrel-fermented wines (p < 0.05), whereas the opposite behaviour was observed for the MTAA toasting. In contrast, similar concentrations of individual ellagitannin compounds were found for both wine modalities in the case of Noisette toasting. Barrel-fermented wines presented significantly lower contents of individual anthocyanins than those which carried out MLF in stainless steel tanks (p < 0.05). These results suggested a higher potential interaction of anthocyanins with oak wood components when MLF occurred in barrels. Greater trans-whiskey lactone levels appeared in wines which undergo MLF in MTAA and Noisette barrels than in the stainless steel tanks. The same behaviour was observed for cis-whiskey lactone, vanillin and syringaldehyde contents for MT and Noisette toastings. Even if it is known that lactic acid bacterias are able to increase oak wood volatiles levels during MLF, it is the first time in the literature that has been reported according to barrel toasting. This observation is crucial as oak wood volatile enrichment during ageing contributes to wine aromatic complexity. All these chemical results led to significant differences in the sensory analyses. Regardless of the toasting method, judges preferred barrel-fermented wines in terms of gustative tasting (>55%). Furthermore, both wine modalities differed significantly with regard to the vanilla and/or overall woody aroma in the case of MT and Noisette toastings (p < 0.05). On the whole, the container where MLF takes place seems to play an important role in i) extraction of ellagitannins from oak wood into wine, and ii) conversion of aromatic precursors into their corresponding woody volatiles. Nevertheless, the barrel toasting was found to condition the accessibility to ellagitannins, as well as the availability of those aromatic precursors. The interaction of both factors influenced the sensory results obtained.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Reyes Gonzalez-Cente*, Kleopatra Chira, Pierre-Louis Teissedre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.