Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Abstract

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines. The toasting method of the barrel influenced significantly the ellagitannin composition of both wine modalities. In the case of MT toasting, wines fermented in stainless steel tanks showed higher ellagitannin content than barrel-fermented wines (p < 0.05), whereas the opposite behaviour was observed for the MTAA toasting. In contrast, similar concentrations of individual ellagitannin compounds were found for both wine modalities in the case of Noisette toasting. Barrel-fermented wines presented significantly lower contents of individual anthocyanins than those which carried out MLF in stainless steel tanks (p < 0.05). These results suggested a higher potential interaction of anthocyanins with oak wood components when MLF occurred in barrels. Greater trans-whiskey lactone levels appeared in wines which undergo MLF in MTAA and Noisette barrels than in the stainless steel tanks. The same behaviour was observed for cis-whiskey lactone, vanillin and syringaldehyde contents for MT and Noisette toastings. Even if it is known that lactic acid bacterias are able to increase oak wood volatiles levels during MLF, it is the first time in the literature that has been reported according to barrel toasting. This observation is crucial as oak wood volatile enrichment during ageing contributes to wine aromatic complexity. All these chemical results led to significant differences in the sensory analyses. Regardless of the toasting method, judges preferred barrel-fermented wines in terms of gustative tasting (>55%). Furthermore, both wine modalities differed significantly with regard to the vanilla and/or overall woody aroma in the case of MT and Noisette toastings (p < 0.05). On the whole, the container where MLF takes place seems to play an important role in i) extraction of ellagitannins from oak wood into wine, and ii) conversion of aromatic precursors into their corresponding woody volatiles. Nevertheless, the barrel toasting was found to condition the accessibility to ellagitannins, as well as the availability of those aromatic precursors. The interaction of both factors influenced the sensory results obtained.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Reyes Gonzalez-Cente*, Kleopatra Chira, Pierre-Louis Teissedre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.