Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Abstract

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines. The toasting method of the barrel influenced significantly the ellagitannin composition of both wine modalities. In the case of MT toasting, wines fermented in stainless steel tanks showed higher ellagitannin content than barrel-fermented wines (p < 0.05), whereas the opposite behaviour was observed for the MTAA toasting. In contrast, similar concentrations of individual ellagitannin compounds were found for both wine modalities in the case of Noisette toasting. Barrel-fermented wines presented significantly lower contents of individual anthocyanins than those which carried out MLF in stainless steel tanks (p < 0.05). These results suggested a higher potential interaction of anthocyanins with oak wood components when MLF occurred in barrels. Greater trans-whiskey lactone levels appeared in wines which undergo MLF in MTAA and Noisette barrels than in the stainless steel tanks. The same behaviour was observed for cis-whiskey lactone, vanillin and syringaldehyde contents for MT and Noisette toastings. Even if it is known that lactic acid bacterias are able to increase oak wood volatiles levels during MLF, it is the first time in the literature that has been reported according to barrel toasting. This observation is crucial as oak wood volatile enrichment during ageing contributes to wine aromatic complexity. All these chemical results led to significant differences in the sensory analyses. Regardless of the toasting method, judges preferred barrel-fermented wines in terms of gustative tasting (>55%). Furthermore, both wine modalities differed significantly with regard to the vanilla and/or overall woody aroma in the case of MT and Noisette toastings (p < 0.05). On the whole, the container where MLF takes place seems to play an important role in i) extraction of ellagitannins from oak wood into wine, and ii) conversion of aromatic precursors into their corresponding woody volatiles. Nevertheless, the barrel toasting was found to condition the accessibility to ellagitannins, as well as the availability of those aromatic precursors. The interaction of both factors influenced the sensory results obtained.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Reyes Gonzalez-Cente*, Kleopatra Chira, Pierre-Louis Teissedre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.