GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Abstract

Context and purpose of the study ‐ The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food as well as environmentally friendly farming practices. Current agricultural and environmental policies are reacting to these demands with initiatives limiting the use of synthetic pesticides and thus promoting organic farming. In viticulture, 316,000 hectares of grapes are grown organically, which is a 4.5 % share of the global grape growing area. The effects of organic and biodynamic viticulture on soil quality and soil microbial diversity in comparison to conventional or integrated viticulture are very controversially discussed. The aim of this review is to summarize the outcomes of scientific trials performed on organic and biodynamic viticulture worldwide and hence to characterize the effects of the respective management systems on soil properties and soil microbial diversity.

Material and methods ‐ Literature searches of peer‐reviewed published literature were conducted to find studies investigating organic and/or biodynamic viticulture which deal with soil properties and biodiversity of the soil microbiota. Only field trials that used replicates of management treatments with representative plots or studies that used a representative number of samples were included in the review in order to avoid bias in individual studies.

Results – For describing the effect of organic and biodynamic viticulture on soil quality and microbial soil life, authors concentrated on reporting the effects of the respective management systems on biological activity of the soil, macronutrient supply, copper levels in the soil and soil microbial diversity. In several studies an increase of the biological activity of the soil under organic management is reported. Biodynamic and organic vineyards show a higher cumulative soil respiration, a higher content of microbial biomass C and a higher ratio of microbial biomass C to organic C, especially after conversion. The contents of organic C, total N, P and S as well as Cu do not differ among treatments in most of the trials. Fungal endophyte colonization of the roots of grapevines under organic management, species richness, diversity indices and arbuscular mycorrhizal spore abundance were higher compared to conventional management. No difference in fungal species richness was assessed in soils of biodynamically and conventionally managed vineyards in New Zealand. In contrast, management systems differed in the types of species present and in the abundance of the single species. These results are supported by a recent study from Germany, where a fungal community shift under organic viticulture was observed without affecting fungal species richness. Bacterial biodiversity was increased in topsoil under organic management compared to conventional viticulture. The links between soil microbial diversity, biological activity of the soil and macronutrient supply will be discussed. Their importance for organic and biodynamic viticulture will be discussed.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johanna DÖRING (1), Maximilian HENDGEN (1), Cassandra COLLINS (2), Georg MEIßNER (1), Matthias FRIEDEL (1), Manfred STOLL (1), Randolf KAUER (1)

(1) Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
(2) University of Adelaïde, Australia

Contact the author

Keywords

Grapevine, biological activity of the soil, macronutrients, copper, soil microbiota

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

Terroir, climat et sol

Le sol et le climat occupent une place prépondérante dans le concept de terroir, pour lequel l’OIV s’apprête à adopter une définition internationale. Les travaux de recherche qui ont été menés depuis une trentaine d’années sur ces thèmes et qui ont été, pour les plus importants, présentés dans les 7 premiers Congrès Internationaux des Terroirs Viticoles ont considérablement modifié les connaissances sur le fonctionnement des terroirs viticoles dans le monde et le comportement des consommateurs avertis par rapport aux vins de terroirs.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).