GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Abstract

Context and purpose of the study ‐ The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food as well as environmentally friendly farming practices. Current agricultural and environmental policies are reacting to these demands with initiatives limiting the use of synthetic pesticides and thus promoting organic farming. In viticulture, 316,000 hectares of grapes are grown organically, which is a 4.5 % share of the global grape growing area. The effects of organic and biodynamic viticulture on soil quality and soil microbial diversity in comparison to conventional or integrated viticulture are very controversially discussed. The aim of this review is to summarize the outcomes of scientific trials performed on organic and biodynamic viticulture worldwide and hence to characterize the effects of the respective management systems on soil properties and soil microbial diversity.

Material and methods ‐ Literature searches of peer‐reviewed published literature were conducted to find studies investigating organic and/or biodynamic viticulture which deal with soil properties and biodiversity of the soil microbiota. Only field trials that used replicates of management treatments with representative plots or studies that used a representative number of samples were included in the review in order to avoid bias in individual studies.

Results – For describing the effect of organic and biodynamic viticulture on soil quality and microbial soil life, authors concentrated on reporting the effects of the respective management systems on biological activity of the soil, macronutrient supply, copper levels in the soil and soil microbial diversity. In several studies an increase of the biological activity of the soil under organic management is reported. Biodynamic and organic vineyards show a higher cumulative soil respiration, a higher content of microbial biomass C and a higher ratio of microbial biomass C to organic C, especially after conversion. The contents of organic C, total N, P and S as well as Cu do not differ among treatments in most of the trials. Fungal endophyte colonization of the roots of grapevines under organic management, species richness, diversity indices and arbuscular mycorrhizal spore abundance were higher compared to conventional management. No difference in fungal species richness was assessed in soils of biodynamically and conventionally managed vineyards in New Zealand. In contrast, management systems differed in the types of species present and in the abundance of the single species. These results are supported by a recent study from Germany, where a fungal community shift under organic viticulture was observed without affecting fungal species richness. Bacterial biodiversity was increased in topsoil under organic management compared to conventional viticulture. The links between soil microbial diversity, biological activity of the soil and macronutrient supply will be discussed. Their importance for organic and biodynamic viticulture will be discussed.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johanna DÖRING (1), Maximilian HENDGEN (1), Cassandra COLLINS (2), Georg MEIßNER (1), Matthias FRIEDEL (1), Manfred STOLL (1), Randolf KAUER (1)

(1) Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
(2) University of Adelaïde, Australia

Contact the author

Keywords

Grapevine, biological activity of the soil, macronutrients, copper, soil microbiota

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages.

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.)

The Baco Blanc, the Armagnac hybrid variety adapted to the viticultural challenges of tomorrow

Today in the wine industry, a lot of alternatives are available for reducing phytosanitary inputs. Among these, prophylaxis, the use of biocontrol products and the deployment of pathogen-resistant vines are the most promising. eugenol (2-methoxy-4-(2-propenyl)-phenol), a molecule with recognised antifungal properties, can contribute to the last two alternatives. This molecule has been identified as an endogenous compound in the baco blanc hybrid variety used in armagnac pdo, which is at least tolerant to botrytis cinerea.

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.