GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Abstract

Context and purpose of the study ‐ The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food as well as environmentally friendly farming practices. Current agricultural and environmental policies are reacting to these demands with initiatives limiting the use of synthetic pesticides and thus promoting organic farming. In viticulture, 316,000 hectares of grapes are grown organically, which is a 4.5 % share of the global grape growing area. The effects of organic and biodynamic viticulture on soil quality and soil microbial diversity in comparison to conventional or integrated viticulture are very controversially discussed. The aim of this review is to summarize the outcomes of scientific trials performed on organic and biodynamic viticulture worldwide and hence to characterize the effects of the respective management systems on soil properties and soil microbial diversity.

Material and methods ‐ Literature searches of peer‐reviewed published literature were conducted to find studies investigating organic and/or biodynamic viticulture which deal with soil properties and biodiversity of the soil microbiota. Only field trials that used replicates of management treatments with representative plots or studies that used a representative number of samples were included in the review in order to avoid bias in individual studies.

Results – For describing the effect of organic and biodynamic viticulture on soil quality and microbial soil life, authors concentrated on reporting the effects of the respective management systems on biological activity of the soil, macronutrient supply, copper levels in the soil and soil microbial diversity. In several studies an increase of the biological activity of the soil under organic management is reported. Biodynamic and organic vineyards show a higher cumulative soil respiration, a higher content of microbial biomass C and a higher ratio of microbial biomass C to organic C, especially after conversion. The contents of organic C, total N, P and S as well as Cu do not differ among treatments in most of the trials. Fungal endophyte colonization of the roots of grapevines under organic management, species richness, diversity indices and arbuscular mycorrhizal spore abundance were higher compared to conventional management. No difference in fungal species richness was assessed in soils of biodynamically and conventionally managed vineyards in New Zealand. In contrast, management systems differed in the types of species present and in the abundance of the single species. These results are supported by a recent study from Germany, where a fungal community shift under organic viticulture was observed without affecting fungal species richness. Bacterial biodiversity was increased in topsoil under organic management compared to conventional viticulture. The links between soil microbial diversity, biological activity of the soil and macronutrient supply will be discussed. Their importance for organic and biodynamic viticulture will be discussed.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johanna DÖRING (1), Maximilian HENDGEN (1), Cassandra COLLINS (2), Georg MEIßNER (1), Matthias FRIEDEL (1), Manfred STOLL (1), Randolf KAUER (1)

(1) Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
(2) University of Adelaïde, Australia

Contact the author

Keywords

Grapevine, biological activity of the soil, macronutrients, copper, soil microbiota

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?