Macrowine 2021
IVES 9 IVES Conference Series 9 WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

Abstract

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal. That process produced an extensive list of substances that play, at least individually, a role on the perceived quality of the wine. However, the combined effect of volatiles responsible for triggering the mechanism of wine-like perception is less explored. A few works address that issue, using omission tests or tentative reconstruction of the wine aroma (3). While accepting that chemical reconstruction of the volatile ‘sensometabolome’ is an important branch of research in this area, our vision is that the reconstruction work should be transferred to “those who know better” i.e. the yeast. The absence of the impression substances feature description constitute an obstacle to define the role of the “aroma quality drivers” on a global market perspective, therefore we will attempt to reconstruct the chemical feature “driven” by the yeast. The objective of the present work was to perform comparative sensorial and metabolomics analysis with four yeast strains from different origins and/or technological applications (cachaça, wine and laboratory), during a fermentative process, in order to characterize their aroma profile and the ability to produce the “wine-like” aroma. Fermentations were analyzed daily by HS-SPME-GC-MS and submitted to sensory analysis. Multivariate tools such as principal component analysis (PCA) and partial least squares regression (PLS-R) were used in order to extract the compounds related with the “wine-like” aroma, by fusion of chemical with sensory data. This approach demonstrates that acetaldehyde; ethyl esters of fatty acids were related with “wine-like” aroma. With PLS-R we were able to develop a model capable to predict “wine-like” with a correlation of 0.8. With this methodology we were capable to create a pipeline that can be used in the future for strains selection which regards the ability to produce compounds related with the “wine-like” aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

António César Silva Ferreira*, Ana Rita Monforte

*ESB-UCP and IWBT-DVO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.