Macrowine 2021
IVES 9 IVES Conference Series 9 WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

Abstract

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal. That process produced an extensive list of substances that play, at least individually, a role on the perceived quality of the wine. However, the combined effect of volatiles responsible for triggering the mechanism of wine-like perception is less explored. A few works address that issue, using omission tests or tentative reconstruction of the wine aroma (3). While accepting that chemical reconstruction of the volatile ‘sensometabolome’ is an important branch of research in this area, our vision is that the reconstruction work should be transferred to “those who know better” i.e. the yeast. The absence of the impression substances feature description constitute an obstacle to define the role of the “aroma quality drivers” on a global market perspective, therefore we will attempt to reconstruct the chemical feature “driven” by the yeast. The objective of the present work was to perform comparative sensorial and metabolomics analysis with four yeast strains from different origins and/or technological applications (cachaça, wine and laboratory), during a fermentative process, in order to characterize their aroma profile and the ability to produce the “wine-like” aroma. Fermentations were analyzed daily by HS-SPME-GC-MS and submitted to sensory analysis. Multivariate tools such as principal component analysis (PCA) and partial least squares regression (PLS-R) were used in order to extract the compounds related with the “wine-like” aroma, by fusion of chemical with sensory data. This approach demonstrates that acetaldehyde; ethyl esters of fatty acids were related with “wine-like” aroma. With PLS-R we were able to develop a model capable to predict “wine-like” with a correlation of 0.8. With this methodology we were capable to create a pipeline that can be used in the future for strains selection which regards the ability to produce compounds related with the “wine-like” aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

António César Silva Ferreira*, Ana Rita Monforte

*ESB-UCP and IWBT-DVO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.