Macrowine 2021
IVES 9 IVES Conference Series 9 WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

Abstract

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal. That process produced an extensive list of substances that play, at least individually, a role on the perceived quality of the wine. However, the combined effect of volatiles responsible for triggering the mechanism of wine-like perception is less explored. A few works address that issue, using omission tests or tentative reconstruction of the wine aroma (3). While accepting that chemical reconstruction of the volatile ‘sensometabolome’ is an important branch of research in this area, our vision is that the reconstruction work should be transferred to “those who know better” i.e. the yeast. The absence of the impression substances feature description constitute an obstacle to define the role of the “aroma quality drivers” on a global market perspective, therefore we will attempt to reconstruct the chemical feature “driven” by the yeast. The objective of the present work was to perform comparative sensorial and metabolomics analysis with four yeast strains from different origins and/or technological applications (cachaça, wine and laboratory), during a fermentative process, in order to characterize their aroma profile and the ability to produce the “wine-like” aroma. Fermentations were analyzed daily by HS-SPME-GC-MS and submitted to sensory analysis. Multivariate tools such as principal component analysis (PCA) and partial least squares regression (PLS-R) were used in order to extract the compounds related with the “wine-like” aroma, by fusion of chemical with sensory data. This approach demonstrates that acetaldehyde; ethyl esters of fatty acids were related with “wine-like” aroma. With PLS-R we were able to develop a model capable to predict “wine-like” with a correlation of 0.8. With this methodology we were capable to create a pipeline that can be used in the future for strains selection which regards the ability to produce compounds related with the “wine-like” aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

António César Silva Ferreira*, Ana Rita Monforte

*ESB-UCP and IWBT-DVO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.