Macrowine 2021
IVES 9 IVES Conference Series 9 Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Abstract

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3. Up to now, this adsorption has mainly been attributed to cell walls, though it has been supposed that small tannin dimers and trimers could enter the periplasmic space through the wall pores and interact with the plasma membrane4. Interactions between polyphenols and inactivated yeast cells or cell walls obtained from an enological commercial strain were studied first by means of adsorption isotherms in a model wine-like solution5. The framework of this study was the aging of red wines. Polyphenols were skin and seed tannins, and a pool of polyphenols purified from a red wine (Merlot). Results evidenced a high capacity of whole cells to irreversibly adsorb grape and wine tannins whereas only weak interactions were observed for cell walls. This point was quite unexpected considering literature and raised the question of the part played by cell walls in the yeast ability to fix wine polyphenols. In the present work, polyphenol location after their interactions with inactivated yeast cells or cell walls was studied by means of transmission electron microscopy, light epifluorescence and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they mostly diffuse freely through the cell wall and plasma membrane of dead cells to interact with their cytoplasmic components. This raised the question of yeast interactions with polyphenols in the case of living cells. The study was thus extended and interactions studied during fermentation, at different stages. The impact of polyphenols on fermentation kinetic and yeast growth rate were determined. In our experimental conditions, the exponential phase of the fermentation and the yeast growth rate were affected by polyphenols. Confocal microscopy observations allowed evidencing the diffusion of polyphenols in living cells. These results demonstrate that interactions between yeast cells and polyphenols are not limited to cell walls. They also involve cytoplasmic components and may influence yeast metabolism.

Litterature cited: 1.Fulcrand et al. (2006), Am. J. Enol. Vitic., 57(3), 289. 2.Morata et al. (2003), J. Agric. Food Chem., 51, 4084 3.Mazauric et al. (2006). J. Agric. Food Chem.,54, 3876 4.Marquez et al. (2009), J. Agric. Food Chem., 57, 8026 5.Mekoue et al. (2015), J. Agric. Food Chem, 63, 660. 6.Mekoue et al. (2015), J. Agric. Food Chem, 63, 7539

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Mekoue Nguela*, Aude Vernhet, Jean-Marc Brillouet, Nathalie Sieczkowski

*INRA/SUPAGRO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).