Macrowine 2021
IVES 9 IVES Conference Series 9 Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Abstract

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3. Up to now, this adsorption has mainly been attributed to cell walls, though it has been supposed that small tannin dimers and trimers could enter the periplasmic space through the wall pores and interact with the plasma membrane4. Interactions between polyphenols and inactivated yeast cells or cell walls obtained from an enological commercial strain were studied first by means of adsorption isotherms in a model wine-like solution5. The framework of this study was the aging of red wines. Polyphenols were skin and seed tannins, and a pool of polyphenols purified from a red wine (Merlot). Results evidenced a high capacity of whole cells to irreversibly adsorb grape and wine tannins whereas only weak interactions were observed for cell walls. This point was quite unexpected considering literature and raised the question of the part played by cell walls in the yeast ability to fix wine polyphenols. In the present work, polyphenol location after their interactions with inactivated yeast cells or cell walls was studied by means of transmission electron microscopy, light epifluorescence and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they mostly diffuse freely through the cell wall and plasma membrane of dead cells to interact with their cytoplasmic components. This raised the question of yeast interactions with polyphenols in the case of living cells. The study was thus extended and interactions studied during fermentation, at different stages. The impact of polyphenols on fermentation kinetic and yeast growth rate were determined. In our experimental conditions, the exponential phase of the fermentation and the yeast growth rate were affected by polyphenols. Confocal microscopy observations allowed evidencing the diffusion of polyphenols in living cells. These results demonstrate that interactions between yeast cells and polyphenols are not limited to cell walls. They also involve cytoplasmic components and may influence yeast metabolism.

Litterature cited: 1.Fulcrand et al. (2006), Am. J. Enol. Vitic., 57(3), 289. 2.Morata et al. (2003), J. Agric. Food Chem., 51, 4084 3.Mazauric et al. (2006). J. Agric. Food Chem.,54, 3876 4.Marquez et al. (2009), J. Agric. Food Chem., 57, 8026 5.Mekoue et al. (2015), J. Agric. Food Chem, 63, 660. 6.Mekoue et al. (2015), J. Agric. Food Chem, 63, 7539

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Mekoue Nguela*, Aude Vernhet, Jean-Marc Brillouet, Nathalie Sieczkowski

*INRA/SUPAGRO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.