Macrowine 2021
IVES 9 IVES Conference Series 9 Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Abstract

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3. Up to now, this adsorption has mainly been attributed to cell walls, though it has been supposed that small tannin dimers and trimers could enter the periplasmic space through the wall pores and interact with the plasma membrane4. Interactions between polyphenols and inactivated yeast cells or cell walls obtained from an enological commercial strain were studied first by means of adsorption isotherms in a model wine-like solution5. The framework of this study was the aging of red wines. Polyphenols were skin and seed tannins, and a pool of polyphenols purified from a red wine (Merlot). Results evidenced a high capacity of whole cells to irreversibly adsorb grape and wine tannins whereas only weak interactions were observed for cell walls. This point was quite unexpected considering literature and raised the question of the part played by cell walls in the yeast ability to fix wine polyphenols. In the present work, polyphenol location after their interactions with inactivated yeast cells or cell walls was studied by means of transmission electron microscopy, light epifluorescence and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they mostly diffuse freely through the cell wall and plasma membrane of dead cells to interact with their cytoplasmic components. This raised the question of yeast interactions with polyphenols in the case of living cells. The study was thus extended and interactions studied during fermentation, at different stages. The impact of polyphenols on fermentation kinetic and yeast growth rate were determined. In our experimental conditions, the exponential phase of the fermentation and the yeast growth rate were affected by polyphenols. Confocal microscopy observations allowed evidencing the diffusion of polyphenols in living cells. These results demonstrate that interactions between yeast cells and polyphenols are not limited to cell walls. They also involve cytoplasmic components and may influence yeast metabolism.

Litterature cited: 1.Fulcrand et al. (2006), Am. J. Enol. Vitic., 57(3), 289. 2.Morata et al. (2003), J. Agric. Food Chem., 51, 4084 3.Mazauric et al. (2006). J. Agric. Food Chem.,54, 3876 4.Marquez et al. (2009), J. Agric. Food Chem., 57, 8026 5.Mekoue et al. (2015), J. Agric. Food Chem, 63, 660. 6.Mekoue et al. (2015), J. Agric. Food Chem, 63, 7539

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Mekoue Nguela*, Aude Vernhet, Jean-Marc Brillouet, Nathalie Sieczkowski

*INRA/SUPAGRO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).