Macrowine 2021
IVES 9 IVES Conference Series 9 Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Abstract

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3. Up to now, this adsorption has mainly been attributed to cell walls, though it has been supposed that small tannin dimers and trimers could enter the periplasmic space through the wall pores and interact with the plasma membrane4. Interactions between polyphenols and inactivated yeast cells or cell walls obtained from an enological commercial strain were studied first by means of adsorption isotherms in a model wine-like solution5. The framework of this study was the aging of red wines. Polyphenols were skin and seed tannins, and a pool of polyphenols purified from a red wine (Merlot). Results evidenced a high capacity of whole cells to irreversibly adsorb grape and wine tannins whereas only weak interactions were observed for cell walls. This point was quite unexpected considering literature and raised the question of the part played by cell walls in the yeast ability to fix wine polyphenols. In the present work, polyphenol location after their interactions with inactivated yeast cells or cell walls was studied by means of transmission electron microscopy, light epifluorescence and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they mostly diffuse freely through the cell wall and plasma membrane of dead cells to interact with their cytoplasmic components. This raised the question of yeast interactions with polyphenols in the case of living cells. The study was thus extended and interactions studied during fermentation, at different stages. The impact of polyphenols on fermentation kinetic and yeast growth rate were determined. In our experimental conditions, the exponential phase of the fermentation and the yeast growth rate were affected by polyphenols. Confocal microscopy observations allowed evidencing the diffusion of polyphenols in living cells. These results demonstrate that interactions between yeast cells and polyphenols are not limited to cell walls. They also involve cytoplasmic components and may influence yeast metabolism.

Litterature cited: 1.Fulcrand et al. (2006), Am. J. Enol. Vitic., 57(3), 289. 2.Morata et al. (2003), J. Agric. Food Chem., 51, 4084 3.Mazauric et al. (2006). J. Agric. Food Chem.,54, 3876 4.Marquez et al. (2009), J. Agric. Food Chem., 57, 8026 5.Mekoue et al. (2015), J. Agric. Food Chem, 63, 660. 6.Mekoue et al. (2015), J. Agric. Food Chem, 63, 7539

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Mekoue Nguela*, Aude Vernhet, Jean-Marc Brillouet, Nathalie Sieczkowski

*INRA/SUPAGRO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.