Macrowine 2021
IVES 9 IVES Conference Series 9 Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Abstract

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3. Up to now, this adsorption has mainly been attributed to cell walls, though it has been supposed that small tannin dimers and trimers could enter the periplasmic space through the wall pores and interact with the plasma membrane4. Interactions between polyphenols and inactivated yeast cells or cell walls obtained from an enological commercial strain were studied first by means of adsorption isotherms in a model wine-like solution5. The framework of this study was the aging of red wines. Polyphenols were skin and seed tannins, and a pool of polyphenols purified from a red wine (Merlot). Results evidenced a high capacity of whole cells to irreversibly adsorb grape and wine tannins whereas only weak interactions were observed for cell walls. This point was quite unexpected considering literature and raised the question of the part played by cell walls in the yeast ability to fix wine polyphenols. In the present work, polyphenol location after their interactions with inactivated yeast cells or cell walls was studied by means of transmission electron microscopy, light epifluorescence and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they mostly diffuse freely through the cell wall and plasma membrane of dead cells to interact with their cytoplasmic components. This raised the question of yeast interactions with polyphenols in the case of living cells. The study was thus extended and interactions studied during fermentation, at different stages. The impact of polyphenols on fermentation kinetic and yeast growth rate were determined. In our experimental conditions, the exponential phase of the fermentation and the yeast growth rate were affected by polyphenols. Confocal microscopy observations allowed evidencing the diffusion of polyphenols in living cells. These results demonstrate that interactions between yeast cells and polyphenols are not limited to cell walls. They also involve cytoplasmic components and may influence yeast metabolism.

Litterature cited: 1.Fulcrand et al. (2006), Am. J. Enol. Vitic., 57(3), 289. 2.Morata et al. (2003), J. Agric. Food Chem., 51, 4084 3.Mazauric et al. (2006). J. Agric. Food Chem.,54, 3876 4.Marquez et al. (2009), J. Agric. Food Chem., 57, 8026 5.Mekoue et al. (2015), J. Agric. Food Chem, 63, 660. 6.Mekoue et al. (2015), J. Agric. Food Chem, 63, 7539

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Mekoue Nguela*, Aude Vernhet, Jean-Marc Brillouet, Nathalie Sieczkowski

*INRA/SUPAGRO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.