Macrowine 2021
IVES 9 IVES Conference Series 9 Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Abstract

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP). An RO-EP technique (and apparatus) was proposed in the 2008 US Patent application by Wollan [4]. In this system, wine is fractionated by reverse osmosis (RO) to generate ‘retentate’ (i.e. concentrated wine) and ‘permeate’ streams. Retentate is circulated back to the feed tank, while permeate is degassed, moderately heated (to 45–55°C), and passed through a hydrophobic hollow fibre membrane; with water flowing across the downstream face of the membrane, as a ‘stripping’ liquid. During RO, ethanol vapour diffuses through membrane pores and is subsequently condensed in the ‘strip’ water, such that the ethanol content of the permeate decreases. Treated permeate is then returned to the feed tank, ultimately giving RAW. Depending on the processing parameters of RO-EP treatment, the alcohol level of RAW can be as much as 1 to 2% (v/v) lower than untreated wine. To date, few studies have considered the impact of RO-EP on wine composition. In this study, two red wines were partially dealcoholised by RO-EP and wine (before and after treatment), retentate, permeate (before and after EP) and strip water samples collected for compositional analysis. Wine colour was measured using spectrophotometric methods; with other compositional changes determined by WineScan, high performance liquid chromatography and gas chromatography-mass spectrometry analyses. Compositional data will be presented, to provide insight into the chemical changes that occur during dealcoholisation of red wine by RO-EP.

References: 1. Pickering, G.J. (2000) Low- and reduced-alcohol wine: A review. Journal of Wine Research, 2000. 11(2): p. 129-144. 2. Godden, P. and Muhlack, R. (2010) Trends in the composition of Australian wine, 1984–2008. Australian and New Zealand Grapegrower and Winemaker, 558, 47–61. 3. Rowley M. (2013) Market analysis for lower alcohol Australian wine. Wine and Viticulture Journal, 28, 63–64. 4. Wollan, D. Alcohol reduction in beverages. Patent Number: US 2008/0272041 A1, 2008.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Duc-Truc Pham*, David Jeffery, David Wollan, Kerry Wilkinson, Vanessa Stockdale

*School of AFW

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.