Macrowine 2021
IVES 9 IVES Conference Series 9 Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Abstract

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels (unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L. The effectiveness of the treatments with CWM was assessed by analyzing the color and phenolic composition of treated wines. Using the lowest dose (0.2 g/L) of CWM has little influence on the color and the phenolic composition of treated wines. However, the highest dose (2.5 g/L) of CWM statistically decreases the phenolic content of wines and modifies their chromatic features: decreasing color intensity (CI) and increasing tone (T). The effect of CWM treatment is greater for wines from unripe and overripe grapes than for wines from mature grapes. In contrast, the maturity level of grapes used for obtain CWM from grape pomace has a little effect on the effectiveness of fining treatment, since the three CWM used (from unripe, mature, and overripe grape pomace) show similar impact on wine color and phenolic composition. Given all this, it seems that the applicability of CWM as fining agent strongly depends on the initial phenolic composition of wines. Besides, high doses of CWM are required to achieve wine clarification. Thus, our results seem to disclose the limitations of using CWM as fining agent at industrial scale.

(1) Guerrero, R. F.; Smith, P.; Bindon, K. Application of Insoluble Fibers in the Fining of Wine Phenolics. J. Agric. Food Chem. 2013, 61 (18), 4424–4432. (2) Bindon, K.; Smith, P.; Kennedy, J. Interaction between grape-derived proanthocyanidins and cell wall material. 1. Effect on proanthocyanidin composition and molecular mass. J. Agric. Food Chem. 2010, 58 (4), 2520–2528. (3) Bindon, K.; Smith, P. Comparison of the affinity and selectivity of insoluble fibres and commercial proteins for wine proanthocyanidins. Food Chem. 2013, 136 (2), 917–928. (4) Bautista-Ortín, A. B.; Ruiz-García, Y.; Marín, F.; Molero, N.; Apolinar-Valiente, R.; Gómez-Plaza, E. Remarkable proanthocyanidin adsorption properties of monastrell pomace cell wall material highlight its potential use as an alternative fining agent in red wine production. J. Agric. Food Chem. 2015, 63 (2), 620–633.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Mariona Gil Cortiella*, Álvaro Peña-Neira, Rubén Del Barrio Galán

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.