Macrowine 2021
IVES 9 IVES Conference Series 9 Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Abstract

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-UPLC/FTMS). All the analyses were performed in grape juice. In agreement with Miklosy & Kerényi (2004) and Sarrazin (2007), the quantification of lactone compounds has confirmed the important role of B. cinerea in increasing their content during the over-ripening of the grapes. However, our observations indicated an evolution that is not similar and depends on the molecular structure of lactones. While the concentrations of saturated lactones i.e. γ-nonalactone continued to increase in the last stage (pourri roti + 15 days), the contents of unsaturated lactones i.e. 2-nonen-4-olide and massoia lactone reached their maximum at the “pourri roti” stage. Moreover, this study also showed differences in the concentration of lactones between the different vintages (2012, 2014 & 2015) and between the vineyards plots, with always higher content for both saturated and unsaturated lactones on the peyrosol plot. Given the sensory impact of 2-nonen-4-olide and massoia lactone, these could be considered as molecular markers for the quality of the noble rot sweet wines. Concerning the quantification of the 3-sulfanylhexan-1-ol precursors, the results showed differences depending on the vintage, the stage of B. cinerea maturation and the vineyard plot. First, depending on the stage of noble rot development, increasing content of precursors is associated with the impact of B. cinerea as previously observed by Thibon et al. (2009). Regarding the vintage, higher levels of S-conjugates precursors were observed in 2014 in comparison with 2012 vintage. Finally, as for lactones, the level of S-conjugates precursors seems to be dependent on the nature of soil, with differences between the vineyards plots and higher content on the peyrosol plot. Keywords: B. cinerea, sweet wines, lactones, S-conjugates aroma precursors, aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Panagiotis Stamatopoulos*, Cécile Thibon, Philippe Darriet, Francis Mayeur, Sandrine Garbay

*Université de Bordeaux, ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.