Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of various groups of pyranoanthocyanins in Merlot red wine

Characterization of various groups of pyranoanthocyanins in Merlot red wine

Abstract

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations. Centrifugal partition chromatography (CPC), as the key purification technique, is commonly used in phytochemistry to separate natural substances. Based on the partition of compounds in a non-miscible liquid-liquid system, it provides many advantages. On one hand, the fractionation is applied on a significant quantity of product, in a short period of time, and thus leads to high purification yield. On the other hand, the selectivity of the solvent system provides efficiency for separating molecules from each other. The red wine used in this study was an oxidized sample from Merlot. It was also fractionated with a gradient elution solvent system. Each obtained fraction from CPC was submitted to HPLC-ESI in order to group the same UV and visible profiles. The pigments were also distributed in 8 blocks and the wash fraction, which were finally analysed with a UHPLC-ESI/Q-ToF strategy. Attention was first focused on blocks 1 and 2. The study of their anthocyanic profile by UHPLC-ESI/Q-ToF revealed the occurrence of various adducts depending on the polarity. Some pyranomalvidin-3-O-coumaroylglucoside adducts, and pyranomalvidin3-O-glucoside with a procyanidin dimer were detected in block 1, and pyranomalvidin-3-O-glucoside-4-vinyl(epi)catechin or acetylglucoside-4-vinyl(epi)catechin were found in block 2. HPLC at the preparative scale allowed separating and collecting each pigment in order to determine and validate their molecular structure by nuclear magnetic resonance (NMR). With the aim to complete this study, further investigation will determine the chemical properties of these molecules. Finally, a first evaluation of their concentrations in a few red wines from Bordeaux region
(oxidized or not) will determine a kinetic pattern of the pigments and their relative importance as markers of wine ageing. Furthermore, CPC which is used in this study is an appropriate anthocyanin fractionation and purification technique at the preparative scale towards the complexity of the red wine sample.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierre-Louis Teissedre*, Cindy Quaglieri, Michael Jourdes, Pierre Waffo-Téguo, Tristan Richard

*ISVV- Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.