GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Abstract

Context and purpose of the study ‐ Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling and vineyard management, especially if selective harvest is aimed. To have a truthful picture of the spatial‐temporal dynamics of grape composition evolution during ripening in a vineyard, a huge amount of measurements at different timings and spatial positions are required. Unfortunately, the quick in‐field measurement of a vast number of samples is very hard for simple variables such as total soluble solids (TSS), and impossible in the case of analyzing secondary metabolites, like anthocyanin concentrations. The goal of this study was the in‐field assessment and mapping of the TSS, acidity parameters and anthocyanin concentrations in a Tempranillo (Vitis vinifera L.) vineyard, using non‐destructive, on‐the‐go hyperspectral imaging (HSI).

Material and methods ‐ HSI of grapevine canopies was carried out using a line‐scan hyperspectral camera working in the Vis‐NIR range (400‐1000 nm) installed in all‐terrain‐vehicle, moving at 5 km/h in a commercial Tempranillo (Vitis vinifera L.) vineyard, under natural illumination conditions. Measurements were carried out at several dates during the ripening period over two consecutive seasons in 2017 and 2018. TSS, titratable acidity (TA), pH and anthocyanin concentrations analyses were also performed using gold standard, wet chemistry methods for model building and validation purposes. Convolutional neural networks (CNN) were applied for the development of regression models. The prediction results from the regression models were used for mapping (using GIS software) the evolution and distribution of grape composition in time–several datesand space–the vineyard plot.

Results ‐ Prediction models were generated for the different grape composition parameters, yielding 2 determination coefficients (R ) above 0.85 for TSS and TA and ~0.70 for pH and anthocyanin concentrations respectively. The built maps illustrated the seasonal dynamics of TSS and anthocyanin accumulation in the studied vineyard. The obtained results evidenced the potential of hyperspectral imaging acquired on‐the‐go for the non‐destructive, robust and massive assessment of TSS and total anthocyanin contents in grape berries in the vineyard. HIS may become a useful tool for decision‐ making on harvest selection and berry fate for winemaking.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Salvador GUTIÉRREZ (1), Juan FERNÁNDEZ‐NOVALES (1), Javier TARDÁGUILA (1), Maria Paz DIAGO (1)

(1) Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. Burgos Km 6. (26007) Logroño, La Rioja, Spain.

Contact the author

Keywords

spatial‐temporal variability, total soluble solids, berry anthocyanins, Vis‐NIR spectral range, acidity parameters, prediction models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

The future of pesticide regulation in the EU – between precaution and proportionality

The article analyzes current developments in European pesticide regulation.

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.