GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Abstract

Context and purpose of the study ‐ Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling and vineyard management, especially if selective harvest is aimed. To have a truthful picture of the spatial‐temporal dynamics of grape composition evolution during ripening in a vineyard, a huge amount of measurements at different timings and spatial positions are required. Unfortunately, the quick in‐field measurement of a vast number of samples is very hard for simple variables such as total soluble solids (TSS), and impossible in the case of analyzing secondary metabolites, like anthocyanin concentrations. The goal of this study was the in‐field assessment and mapping of the TSS, acidity parameters and anthocyanin concentrations in a Tempranillo (Vitis vinifera L.) vineyard, using non‐destructive, on‐the‐go hyperspectral imaging (HSI).

Material and methods ‐ HSI of grapevine canopies was carried out using a line‐scan hyperspectral camera working in the Vis‐NIR range (400‐1000 nm) installed in all‐terrain‐vehicle, moving at 5 km/h in a commercial Tempranillo (Vitis vinifera L.) vineyard, under natural illumination conditions. Measurements were carried out at several dates during the ripening period over two consecutive seasons in 2017 and 2018. TSS, titratable acidity (TA), pH and anthocyanin concentrations analyses were also performed using gold standard, wet chemistry methods for model building and validation purposes. Convolutional neural networks (CNN) were applied for the development of regression models. The prediction results from the regression models were used for mapping (using GIS software) the evolution and distribution of grape composition in time–several datesand space–the vineyard plot.

Results ‐ Prediction models were generated for the different grape composition parameters, yielding 2 determination coefficients (R ) above 0.85 for TSS and TA and ~0.70 for pH and anthocyanin concentrations respectively. The built maps illustrated the seasonal dynamics of TSS and anthocyanin accumulation in the studied vineyard. The obtained results evidenced the potential of hyperspectral imaging acquired on‐the‐go for the non‐destructive, robust and massive assessment of TSS and total anthocyanin contents in grape berries in the vineyard. HIS may become a useful tool for decision‐ making on harvest selection and berry fate for winemaking.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Salvador GUTIÉRREZ (1), Juan FERNÁNDEZ‐NOVALES (1), Javier TARDÁGUILA (1), Maria Paz DIAGO (1)

(1) Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. Burgos Km 6. (26007) Logroño, La Rioja, Spain.

Contact the author

Keywords

spatial‐temporal variability, total soluble solids, berry anthocyanins, Vis‐NIR spectral range, acidity parameters, prediction models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Evaluation of methods used for the isolation and characterization of grape skin and seed, and wine tannins

Validation of the phloroglucinolysis and RP-HPLC method showed selectivity and repeatability within acceptable limits for all investigated matrices. Recovery of polymeric phenols by SPE was also acceptable.

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.