GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Abstract

Context and purpose of the study ‐ Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling and vineyard management, especially if selective harvest is aimed. To have a truthful picture of the spatial‐temporal dynamics of grape composition evolution during ripening in a vineyard, a huge amount of measurements at different timings and spatial positions are required. Unfortunately, the quick in‐field measurement of a vast number of samples is very hard for simple variables such as total soluble solids (TSS), and impossible in the case of analyzing secondary metabolites, like anthocyanin concentrations. The goal of this study was the in‐field assessment and mapping of the TSS, acidity parameters and anthocyanin concentrations in a Tempranillo (Vitis vinifera L.) vineyard, using non‐destructive, on‐the‐go hyperspectral imaging (HSI).

Material and methods ‐ HSI of grapevine canopies was carried out using a line‐scan hyperspectral camera working in the Vis‐NIR range (400‐1000 nm) installed in all‐terrain‐vehicle, moving at 5 km/h in a commercial Tempranillo (Vitis vinifera L.) vineyard, under natural illumination conditions. Measurements were carried out at several dates during the ripening period over two consecutive seasons in 2017 and 2018. TSS, titratable acidity (TA), pH and anthocyanin concentrations analyses were also performed using gold standard, wet chemistry methods for model building and validation purposes. Convolutional neural networks (CNN) were applied for the development of regression models. The prediction results from the regression models were used for mapping (using GIS software) the evolution and distribution of grape composition in time–several datesand space–the vineyard plot.

Results ‐ Prediction models were generated for the different grape composition parameters, yielding 2 determination coefficients (R ) above 0.85 for TSS and TA and ~0.70 for pH and anthocyanin concentrations respectively. The built maps illustrated the seasonal dynamics of TSS and anthocyanin accumulation in the studied vineyard. The obtained results evidenced the potential of hyperspectral imaging acquired on‐the‐go for the non‐destructive, robust and massive assessment of TSS and total anthocyanin contents in grape berries in the vineyard. HIS may become a useful tool for decision‐ making on harvest selection and berry fate for winemaking.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Salvador GUTIÉRREZ (1), Juan FERNÁNDEZ‐NOVALES (1), Javier TARDÁGUILA (1), Maria Paz DIAGO (1)

(1) Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. Burgos Km 6. (26007) Logroño, La Rioja, Spain.

Contact the author

Keywords

spatial‐temporal variability, total soluble solids, berry anthocyanins, Vis‐NIR spectral range, acidity parameters, prediction models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…