GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Abstract

Context and purpose of the study ‐ Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling and vineyard management, especially if selective harvest is aimed. To have a truthful picture of the spatial‐temporal dynamics of grape composition evolution during ripening in a vineyard, a huge amount of measurements at different timings and spatial positions are required. Unfortunately, the quick in‐field measurement of a vast number of samples is very hard for simple variables such as total soluble solids (TSS), and impossible in the case of analyzing secondary metabolites, like anthocyanin concentrations. The goal of this study was the in‐field assessment and mapping of the TSS, acidity parameters and anthocyanin concentrations in a Tempranillo (Vitis vinifera L.) vineyard, using non‐destructive, on‐the‐go hyperspectral imaging (HSI).

Material and methods ‐ HSI of grapevine canopies was carried out using a line‐scan hyperspectral camera working in the Vis‐NIR range (400‐1000 nm) installed in all‐terrain‐vehicle, moving at 5 km/h in a commercial Tempranillo (Vitis vinifera L.) vineyard, under natural illumination conditions. Measurements were carried out at several dates during the ripening period over two consecutive seasons in 2017 and 2018. TSS, titratable acidity (TA), pH and anthocyanin concentrations analyses were also performed using gold standard, wet chemistry methods for model building and validation purposes. Convolutional neural networks (CNN) were applied for the development of regression models. The prediction results from the regression models were used for mapping (using GIS software) the evolution and distribution of grape composition in time–several datesand space–the vineyard plot.

Results ‐ Prediction models were generated for the different grape composition parameters, yielding 2 determination coefficients (R ) above 0.85 for TSS and TA and ~0.70 for pH and anthocyanin concentrations respectively. The built maps illustrated the seasonal dynamics of TSS and anthocyanin accumulation in the studied vineyard. The obtained results evidenced the potential of hyperspectral imaging acquired on‐the‐go for the non‐destructive, robust and massive assessment of TSS and total anthocyanin contents in grape berries in the vineyard. HIS may become a useful tool for decision‐ making on harvest selection and berry fate for winemaking.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Salvador GUTIÉRREZ (1), Juan FERNÁNDEZ‐NOVALES (1), Javier TARDÁGUILA (1), Maria Paz DIAGO (1)

(1) Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. Burgos Km 6. (26007) Logroño, La Rioja, Spain.

Contact the author

Keywords

spatial‐temporal variability, total soluble solids, berry anthocyanins, Vis‐NIR spectral range, acidity parameters, prediction models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

An operational model for capturing grape ripening dynamics to support harvest decisions

Grape ripening is a critical phenophase during which many metabolites driving wine quality are accumulated in berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.