Macrowine 2021
IVES 9 IVES Conference Series 9 Fining-Derived Allergens in Wine: from Detection to Quantification

Fining-Derived Allergens in Wine: from Detection to Quantification

Abstract

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition). Suitable methods to detect and quantify potential residual allergens are necessary to ensure compliance with legislation. ELISA kits are routinely used to ensure the absence of allergenic proteins in wines, since they are easy to perform. The required LOD and LOQ for milk and egg products with ELISA methods are 0.25 ppm and 0.5 ppm (OIV Comex 502- 2012). In a recent paper (1), no detectable egg white protein residue was found in red wines by ELISA, even when coadiuvant was added at 660 ppm, without following bentonite treatment. In 2011, a clinical survey (2) reported that, although no allergen residue was detected by ELISA kits in the fined wines, positive skin prick test reactions and basophil activation to the treated wines were observed in the majority of patients with allergy to milk, egg or fish, correlating with the concentration of the fining agents used. From these findings, some uncentainty about the safety of wines certified as “allergen-free” through ELISA methods can exist. More recently, mass spectrometry have been proposed, mainly as a confirmatory method of results from ELISA. The two main drawbacks for MS-based methods, especially in the past, were insufficient LOD and LOQ, and high costs. At present, some methods with competitive performance and linearity have been set up for milk and egg protein based fining aids. Aim of the present presentation is to review the different approaches in the detection of allergenic residues in wines, including recent metrological approaches, and development of innovative biosensors. Preliminary data on MS-based method that is currently being developed in our laboratory will be presented, as well future perspectives on the topic and possible implications for consumers health, safety and ethical preferences.

1- Uberti F., et al. Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins. Food Chem. 2014;159:343-52. 2- Vassilopoulou E., et al. Risk of allergic reactions to wine, in milk, egg and fish-allergic patients. Clin Transl Allergy. 2011;1:10.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Gabriella Giuffrida*, Cristina Lamberti, Daniela Gastaldi, Laura Cavallarin, Marzia Giribaldi

*ISPA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.