Macrowine 2021
IVES 9 IVES Conference Series 9 Fining-Derived Allergens in Wine: from Detection to Quantification

Fining-Derived Allergens in Wine: from Detection to Quantification

Abstract

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition). Suitable methods to detect and quantify potential residual allergens are necessary to ensure compliance with legislation. ELISA kits are routinely used to ensure the absence of allergenic proteins in wines, since they are easy to perform. The required LOD and LOQ for milk and egg products with ELISA methods are 0.25 ppm and 0.5 ppm (OIV Comex 502- 2012). In a recent paper (1), no detectable egg white protein residue was found in red wines by ELISA, even when coadiuvant was added at 660 ppm, without following bentonite treatment. In 2011, a clinical survey (2) reported that, although no allergen residue was detected by ELISA kits in the fined wines, positive skin prick test reactions and basophil activation to the treated wines were observed in the majority of patients with allergy to milk, egg or fish, correlating with the concentration of the fining agents used. From these findings, some uncentainty about the safety of wines certified as “allergen-free” through ELISA methods can exist. More recently, mass spectrometry have been proposed, mainly as a confirmatory method of results from ELISA. The two main drawbacks for MS-based methods, especially in the past, were insufficient LOD and LOQ, and high costs. At present, some methods with competitive performance and linearity have been set up for milk and egg protein based fining aids. Aim of the present presentation is to review the different approaches in the detection of allergenic residues in wines, including recent metrological approaches, and development of innovative biosensors. Preliminary data on MS-based method that is currently being developed in our laboratory will be presented, as well future perspectives on the topic and possible implications for consumers health, safety and ethical preferences.

1- Uberti F., et al. Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins. Food Chem. 2014;159:343-52. 2- Vassilopoulou E., et al. Risk of allergic reactions to wine, in milk, egg and fish-allergic patients. Clin Transl Allergy. 2011;1:10.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Gabriella Giuffrida*, Cristina Lamberti, Daniela Gastaldi, Laura Cavallarin, Marzia Giribaldi

*ISPA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.