Macrowine 2021
IVES 9 IVES Conference Series 9 Fining-Derived Allergens in Wine: from Detection to Quantification

Fining-Derived Allergens in Wine: from Detection to Quantification

Abstract

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition). Suitable methods to detect and quantify potential residual allergens are necessary to ensure compliance with legislation. ELISA kits are routinely used to ensure the absence of allergenic proteins in wines, since they are easy to perform. The required LOD and LOQ for milk and egg products with ELISA methods are 0.25 ppm and 0.5 ppm (OIV Comex 502- 2012). In a recent paper (1), no detectable egg white protein residue was found in red wines by ELISA, even when coadiuvant was added at 660 ppm, without following bentonite treatment. In 2011, a clinical survey (2) reported that, although no allergen residue was detected by ELISA kits in the fined wines, positive skin prick test reactions and basophil activation to the treated wines were observed in the majority of patients with allergy to milk, egg or fish, correlating with the concentration of the fining agents used. From these findings, some uncentainty about the safety of wines certified as “allergen-free” through ELISA methods can exist. More recently, mass spectrometry have been proposed, mainly as a confirmatory method of results from ELISA. The two main drawbacks for MS-based methods, especially in the past, were insufficient LOD and LOQ, and high costs. At present, some methods with competitive performance and linearity have been set up for milk and egg protein based fining aids. Aim of the present presentation is to review the different approaches in the detection of allergenic residues in wines, including recent metrological approaches, and development of innovative biosensors. Preliminary data on MS-based method that is currently being developed in our laboratory will be presented, as well future perspectives on the topic and possible implications for consumers health, safety and ethical preferences.

1- Uberti F., et al. Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins. Food Chem. 2014;159:343-52. 2- Vassilopoulou E., et al. Risk of allergic reactions to wine, in milk, egg and fish-allergic patients. Clin Transl Allergy. 2011;1:10.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Gabriella Giuffrida*, Cristina Lamberti, Daniela Gastaldi, Laura Cavallarin, Marzia Giribaldi

*ISPA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.