Macrowine 2021
IVES 9 IVES Conference Series 9 Fining-Derived Allergens in Wine: from Detection to Quantification

Fining-Derived Allergens in Wine: from Detection to Quantification

Abstract

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition). Suitable methods to detect and quantify potential residual allergens are necessary to ensure compliance with legislation. ELISA kits are routinely used to ensure the absence of allergenic proteins in wines, since they are easy to perform. The required LOD and LOQ for milk and egg products with ELISA methods are 0.25 ppm and 0.5 ppm (OIV Comex 502- 2012). In a recent paper (1), no detectable egg white protein residue was found in red wines by ELISA, even when coadiuvant was added at 660 ppm, without following bentonite treatment. In 2011, a clinical survey (2) reported that, although no allergen residue was detected by ELISA kits in the fined wines, positive skin prick test reactions and basophil activation to the treated wines were observed in the majority of patients with allergy to milk, egg or fish, correlating with the concentration of the fining agents used. From these findings, some uncentainty about the safety of wines certified as “allergen-free” through ELISA methods can exist. More recently, mass spectrometry have been proposed, mainly as a confirmatory method of results from ELISA. The two main drawbacks for MS-based methods, especially in the past, were insufficient LOD and LOQ, and high costs. At present, some methods with competitive performance and linearity have been set up for milk and egg protein based fining aids. Aim of the present presentation is to review the different approaches in the detection of allergenic residues in wines, including recent metrological approaches, and development of innovative biosensors. Preliminary data on MS-based method that is currently being developed in our laboratory will be presented, as well future perspectives on the topic and possible implications for consumers health, safety and ethical preferences.

1- Uberti F., et al. Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins. Food Chem. 2014;159:343-52. 2- Vassilopoulou E., et al. Risk of allergic reactions to wine, in milk, egg and fish-allergic patients. Clin Transl Allergy. 2011;1:10.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Gabriella Giuffrida*, Cristina Lamberti, Daniela Gastaldi, Laura Cavallarin, Marzia Giribaldi

*ISPA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.