Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Abstract

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels. Therefore we determined the odor detection threshold (DT) with a three alternatives forced choice (3-AFC) test and calculated the best estimate threshold (BET) for each panelist, followed by the calculation of the BET for the whole panel. Matrices varied from water, a model wine, a dry Riesling wine and sparkling wine; the latter two exceptionally low in TDN. Carbonation in water, model wine and Riesling wine ranged from no addition to 2.5 and 6 bar pressure. Ethanol altered from 8 to 14% alc. in 2% alc. increments. Carbonation yielded an inconsistent effect due to a better volatilization leading to lower thresholds and masking of the TDN perception leading to slightly higher thresholds. Increasing ethanol levels however showed a clear tendency to raise the TDN thresholds, presumably due to better solubility and masking by its own pungent odor. Absolute thresholds varied in water between 2.6 and 4.0 µg/L and in wine between 8.5 and 15.2 µg/L. Since TDN is formed by a breakdown of carotenes, its occurrence correlates positively with the degree of sun exposure. This is partially governed by berry size and cluster density given by clonal differences. Thus we studied free and bound TDN in grapes and wines from 8 different Riesling clones. Furthermore, berries were divided in a two fractions according to a diameter smaller and larger than 13 mm. The berry fractions were separately crushed, pressed and fermented. Preliminary results indicate that the clonal influence on the formation of free TDN in the wines was substantially larger than the impact of berry size.

Literature: 1: Winterhalter, P; Goek, R. 2013; Carotenoid Cleavage Products. ACS Symp. Series 1134, 125-137. 2: Sacks, G. L.; Gates, M. J.; Ferry, F. X.; Lavin, E. H.; Kurtz, A. J.; Acree, T. E. 2012; Journal of Agricultural and Food Chemistry 60(12), 2998-3004 3: Ross, C. F.; Zwink, A. C.; Castro, L.; Harrison, R. 2014; Australian Journal of Grape and Wine Research 20(3), 335-339 4: Simpson, R. F. 1978; Chemistry and Industry 1, 37.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Ziegler*, Hans-Georg Schmarr, Johanna Molenda, Recep Gök, Sandra Klink, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.