Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Abstract

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels. Therefore we determined the odor detection threshold (DT) with a three alternatives forced choice (3-AFC) test and calculated the best estimate threshold (BET) for each panelist, followed by the calculation of the BET for the whole panel. Matrices varied from water, a model wine, a dry Riesling wine and sparkling wine; the latter two exceptionally low in TDN. Carbonation in water, model wine and Riesling wine ranged from no addition to 2.5 and 6 bar pressure. Ethanol altered from 8 to 14% alc. in 2% alc. increments. Carbonation yielded an inconsistent effect due to a better volatilization leading to lower thresholds and masking of the TDN perception leading to slightly higher thresholds. Increasing ethanol levels however showed a clear tendency to raise the TDN thresholds, presumably due to better solubility and masking by its own pungent odor. Absolute thresholds varied in water between 2.6 and 4.0 µg/L and in wine between 8.5 and 15.2 µg/L. Since TDN is formed by a breakdown of carotenes, its occurrence correlates positively with the degree of sun exposure. This is partially governed by berry size and cluster density given by clonal differences. Thus we studied free and bound TDN in grapes and wines from 8 different Riesling clones. Furthermore, berries were divided in a two fractions according to a diameter smaller and larger than 13 mm. The berry fractions were separately crushed, pressed and fermented. Preliminary results indicate that the clonal influence on the formation of free TDN in the wines was substantially larger than the impact of berry size.

Literature: 1: Winterhalter, P; Goek, R. 2013; Carotenoid Cleavage Products. ACS Symp. Series 1134, 125-137. 2: Sacks, G. L.; Gates, M. J.; Ferry, F. X.; Lavin, E. H.; Kurtz, A. J.; Acree, T. E. 2012; Journal of Agricultural and Food Chemistry 60(12), 2998-3004 3: Ross, C. F.; Zwink, A. C.; Castro, L.; Harrison, R. 2014; Australian Journal of Grape and Wine Research 20(3), 335-339 4: Simpson, R. F. 1978; Chemistry and Industry 1, 37.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Ziegler*, Hans-Georg Schmarr, Johanna Molenda, Recep Gök, Sandra Klink, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.