Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Abstract

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels. Therefore we determined the odor detection threshold (DT) with a three alternatives forced choice (3-AFC) test and calculated the best estimate threshold (BET) for each panelist, followed by the calculation of the BET for the whole panel. Matrices varied from water, a model wine, a dry Riesling wine and sparkling wine; the latter two exceptionally low in TDN. Carbonation in water, model wine and Riesling wine ranged from no addition to 2.5 and 6 bar pressure. Ethanol altered from 8 to 14% alc. in 2% alc. increments. Carbonation yielded an inconsistent effect due to a better volatilization leading to lower thresholds and masking of the TDN perception leading to slightly higher thresholds. Increasing ethanol levels however showed a clear tendency to raise the TDN thresholds, presumably due to better solubility and masking by its own pungent odor. Absolute thresholds varied in water between 2.6 and 4.0 µg/L and in wine between 8.5 and 15.2 µg/L. Since TDN is formed by a breakdown of carotenes, its occurrence correlates positively with the degree of sun exposure. This is partially governed by berry size and cluster density given by clonal differences. Thus we studied free and bound TDN in grapes and wines from 8 different Riesling clones. Furthermore, berries were divided in a two fractions according to a diameter smaller and larger than 13 mm. The berry fractions were separately crushed, pressed and fermented. Preliminary results indicate that the clonal influence on the formation of free TDN in the wines was substantially larger than the impact of berry size.

Literature: 1: Winterhalter, P; Goek, R. 2013; Carotenoid Cleavage Products. ACS Symp. Series 1134, 125-137. 2: Sacks, G. L.; Gates, M. J.; Ferry, F. X.; Lavin, E. H.; Kurtz, A. J.; Acree, T. E. 2012; Journal of Agricultural and Food Chemistry 60(12), 2998-3004 3: Ross, C. F.; Zwink, A. C.; Castro, L.; Harrison, R. 2014; Australian Journal of Grape and Wine Research 20(3), 335-339 4: Simpson, R. F. 1978; Chemistry and Industry 1, 37.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Ziegler*, Hans-Georg Schmarr, Johanna Molenda, Recep Gök, Sandra Klink, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.