Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Abstract

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels. Therefore we determined the odor detection threshold (DT) with a three alternatives forced choice (3-AFC) test and calculated the best estimate threshold (BET) for each panelist, followed by the calculation of the BET for the whole panel. Matrices varied from water, a model wine, a dry Riesling wine and sparkling wine; the latter two exceptionally low in TDN. Carbonation in water, model wine and Riesling wine ranged from no addition to 2.5 and 6 bar pressure. Ethanol altered from 8 to 14% alc. in 2% alc. increments. Carbonation yielded an inconsistent effect due to a better volatilization leading to lower thresholds and masking of the TDN perception leading to slightly higher thresholds. Increasing ethanol levels however showed a clear tendency to raise the TDN thresholds, presumably due to better solubility and masking by its own pungent odor. Absolute thresholds varied in water between 2.6 and 4.0 µg/L and in wine between 8.5 and 15.2 µg/L. Since TDN is formed by a breakdown of carotenes, its occurrence correlates positively with the degree of sun exposure. This is partially governed by berry size and cluster density given by clonal differences. Thus we studied free and bound TDN in grapes and wines from 8 different Riesling clones. Furthermore, berries were divided in a two fractions according to a diameter smaller and larger than 13 mm. The berry fractions were separately crushed, pressed and fermented. Preliminary results indicate that the clonal influence on the formation of free TDN in the wines was substantially larger than the impact of berry size.

Literature: 1: Winterhalter, P; Goek, R. 2013; Carotenoid Cleavage Products. ACS Symp. Series 1134, 125-137. 2: Sacks, G. L.; Gates, M. J.; Ferry, F. X.; Lavin, E. H.; Kurtz, A. J.; Acree, T. E. 2012; Journal of Agricultural and Food Chemistry 60(12), 2998-3004 3: Ross, C. F.; Zwink, A. C.; Castro, L.; Harrison, R. 2014; Australian Journal of Grape and Wine Research 20(3), 335-339 4: Simpson, R. F. 1978; Chemistry and Industry 1, 37.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Ziegler*, Hans-Georg Schmarr, Johanna Molenda, Recep Gök, Sandra Klink, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?