Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

Abstract

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels. Therefore we determined the odor detection threshold (DT) with a three alternatives forced choice (3-AFC) test and calculated the best estimate threshold (BET) for each panelist, followed by the calculation of the BET for the whole panel. Matrices varied from water, a model wine, a dry Riesling wine and sparkling wine; the latter two exceptionally low in TDN. Carbonation in water, model wine and Riesling wine ranged from no addition to 2.5 and 6 bar pressure. Ethanol altered from 8 to 14% alc. in 2% alc. increments. Carbonation yielded an inconsistent effect due to a better volatilization leading to lower thresholds and masking of the TDN perception leading to slightly higher thresholds. Increasing ethanol levels however showed a clear tendency to raise the TDN thresholds, presumably due to better solubility and masking by its own pungent odor. Absolute thresholds varied in water between 2.6 and 4.0 µg/L and in wine between 8.5 and 15.2 µg/L. Since TDN is formed by a breakdown of carotenes, its occurrence correlates positively with the degree of sun exposure. This is partially governed by berry size and cluster density given by clonal differences. Thus we studied free and bound TDN in grapes and wines from 8 different Riesling clones. Furthermore, berries were divided in a two fractions according to a diameter smaller and larger than 13 mm. The berry fractions were separately crushed, pressed and fermented. Preliminary results indicate that the clonal influence on the formation of free TDN in the wines was substantially larger than the impact of berry size.

Literature: 1: Winterhalter, P; Goek, R. 2013; Carotenoid Cleavage Products. ACS Symp. Series 1134, 125-137. 2: Sacks, G. L.; Gates, M. J.; Ferry, F. X.; Lavin, E. H.; Kurtz, A. J.; Acree, T. E. 2012; Journal of Agricultural and Food Chemistry 60(12), 2998-3004 3: Ross, C. F.; Zwink, A. C.; Castro, L.; Harrison, R. 2014; Australian Journal of Grape and Wine Research 20(3), 335-339 4: Simpson, R. F. 1978; Chemistry and Industry 1, 37.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Ziegler*, Hans-Georg Schmarr, Johanna Molenda, Recep Gök, Sandra Klink, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.