Macrowine 2021
IVES 9 IVES Conference Series 9 Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Abstract

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds. Acetaldehyde is quantitatively the most important aldehyde and formed by yeast metabolism or through the auto-oxidation of ethanol during and after fermentations. Its grassy-green aroma typically is prevented by addition of SO2 that strongly binds to acetaldehyde hence masking its aroma. Hetero- and homofermentative wine lactic acid bacteria are responsible for the secondary malolactic fermentation in most red and some white wines and can degrade acetaldehyde. During malolactic fermentation, wine lactic acid bacteria are capable of reducing acetaldehyde levels significantly (~90%). Two reaction pathways were previously described by our group, the chemical reduction of acetaldehyde to ethanol by alcohol dehydrogenase (ADH), or its oxidation to acetic acid by aldehyde dehydrogenase (Al-DH). ADH and Al-DH are known to have a broad substrate specificity. Hence, it is possible that wine lactic acid bacteria may be able to degrade other volatile aldehydes that are known to contribute to herbaceousness in wines. Hexanal, methional, 2-methylbutanal, 3-methylbutanal, 2-methylpropanal, E-2-nonenal and phenyl-acetaldehyde are aldehydes and powerful herbaceous aroma compounds with odour thresholds between 0.5 and 16 µg/l. The odour thresholds of their corresponding alcohols are 100 to 14’000 times higher. Thus, chemical reduction of these aldehydes to the corresponding alcohols by wine lactic acid bacteria may lead to a reduction of herbaceous notes. Within the scope of this investigation, highly concentrated solutions of resting cells of several heterofermentative and facultative homofermentative wine lactic acid bacteria of the genera Oenococcus and Lactobacillus were tested for their ability to degrade these volatile aldehydes. A careful incubation and sample-taking protocol was applied in order to prevent sample evaporation. The analysis of volatile aldehydes was performed by liquid-liquid micro-extraction followed by GC-MS analysis. It could be demonstrated that all bacteria were able to degrade all volatile aldehydes efficiently. Within 50 minutes, an average of 95% of the initial aldehyde concentration was degraded with minima and maxima of 63 and 100%, respectively. The results suggest that wine lactic acid bacteria may be able to degrade volatile aldehydes during malolactic fermentation thus reducing their sensory impact and increasing sensory perception of compounds with fruity character.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Alexandra Le Boursier, Marilyn Cléroux, Tatevik Gabrielyan

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.