Macrowine 2021
IVES 9 IVES Conference Series 9 Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Abstract

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds. Acetaldehyde is quantitatively the most important aldehyde and formed by yeast metabolism or through the auto-oxidation of ethanol during and after fermentations. Its grassy-green aroma typically is prevented by addition of SO2 that strongly binds to acetaldehyde hence masking its aroma. Hetero- and homofermentative wine lactic acid bacteria are responsible for the secondary malolactic fermentation in most red and some white wines and can degrade acetaldehyde. During malolactic fermentation, wine lactic acid bacteria are capable of reducing acetaldehyde levels significantly (~90%). Two reaction pathways were previously described by our group, the chemical reduction of acetaldehyde to ethanol by alcohol dehydrogenase (ADH), or its oxidation to acetic acid by aldehyde dehydrogenase (Al-DH). ADH and Al-DH are known to have a broad substrate specificity. Hence, it is possible that wine lactic acid bacteria may be able to degrade other volatile aldehydes that are known to contribute to herbaceousness in wines. Hexanal, methional, 2-methylbutanal, 3-methylbutanal, 2-methylpropanal, E-2-nonenal and phenyl-acetaldehyde are aldehydes and powerful herbaceous aroma compounds with odour thresholds between 0.5 and 16 µg/l. The odour thresholds of their corresponding alcohols are 100 to 14’000 times higher. Thus, chemical reduction of these aldehydes to the corresponding alcohols by wine lactic acid bacteria may lead to a reduction of herbaceous notes. Within the scope of this investigation, highly concentrated solutions of resting cells of several heterofermentative and facultative homofermentative wine lactic acid bacteria of the genera Oenococcus and Lactobacillus were tested for their ability to degrade these volatile aldehydes. A careful incubation and sample-taking protocol was applied in order to prevent sample evaporation. The analysis of volatile aldehydes was performed by liquid-liquid micro-extraction followed by GC-MS analysis. It could be demonstrated that all bacteria were able to degrade all volatile aldehydes efficiently. Within 50 minutes, an average of 95% of the initial aldehyde concentration was degraded with minima and maxima of 63 and 100%, respectively. The results suggest that wine lactic acid bacteria may be able to degrade volatile aldehydes during malolactic fermentation thus reducing their sensory impact and increasing sensory perception of compounds with fruity character.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Alexandra Le Boursier, Marilyn Cléroux, Tatevik Gabrielyan

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.