Macrowine 2021
IVES 9 IVES Conference Series 9 Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Abstract

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds. Acetaldehyde is quantitatively the most important aldehyde and formed by yeast metabolism or through the auto-oxidation of ethanol during and after fermentations. Its grassy-green aroma typically is prevented by addition of SO2 that strongly binds to acetaldehyde hence masking its aroma. Hetero- and homofermentative wine lactic acid bacteria are responsible for the secondary malolactic fermentation in most red and some white wines and can degrade acetaldehyde. During malolactic fermentation, wine lactic acid bacteria are capable of reducing acetaldehyde levels significantly (~90%). Two reaction pathways were previously described by our group, the chemical reduction of acetaldehyde to ethanol by alcohol dehydrogenase (ADH), or its oxidation to acetic acid by aldehyde dehydrogenase (Al-DH). ADH and Al-DH are known to have a broad substrate specificity. Hence, it is possible that wine lactic acid bacteria may be able to degrade other volatile aldehydes that are known to contribute to herbaceousness in wines. Hexanal, methional, 2-methylbutanal, 3-methylbutanal, 2-methylpropanal, E-2-nonenal and phenyl-acetaldehyde are aldehydes and powerful herbaceous aroma compounds with odour thresholds between 0.5 and 16 µg/l. The odour thresholds of their corresponding alcohols are 100 to 14’000 times higher. Thus, chemical reduction of these aldehydes to the corresponding alcohols by wine lactic acid bacteria may lead to a reduction of herbaceous notes. Within the scope of this investigation, highly concentrated solutions of resting cells of several heterofermentative and facultative homofermentative wine lactic acid bacteria of the genera Oenococcus and Lactobacillus were tested for their ability to degrade these volatile aldehydes. A careful incubation and sample-taking protocol was applied in order to prevent sample evaporation. The analysis of volatile aldehydes was performed by liquid-liquid micro-extraction followed by GC-MS analysis. It could be demonstrated that all bacteria were able to degrade all volatile aldehydes efficiently. Within 50 minutes, an average of 95% of the initial aldehyde concentration was degraded with minima and maxima of 63 and 100%, respectively. The results suggest that wine lactic acid bacteria may be able to degrade volatile aldehydes during malolactic fermentation thus reducing their sensory impact and increasing sensory perception of compounds with fruity character.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Alexandra Le Boursier, Marilyn Cléroux, Tatevik Gabrielyan

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.