Macrowine 2021
IVES 9 IVES Conference Series 9 Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Abstract

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds. Acetaldehyde is quantitatively the most important aldehyde and formed by yeast metabolism or through the auto-oxidation of ethanol during and after fermentations. Its grassy-green aroma typically is prevented by addition of SO2 that strongly binds to acetaldehyde hence masking its aroma. Hetero- and homofermentative wine lactic acid bacteria are responsible for the secondary malolactic fermentation in most red and some white wines and can degrade acetaldehyde. During malolactic fermentation, wine lactic acid bacteria are capable of reducing acetaldehyde levels significantly (~90%). Two reaction pathways were previously described by our group, the chemical reduction of acetaldehyde to ethanol by alcohol dehydrogenase (ADH), or its oxidation to acetic acid by aldehyde dehydrogenase (Al-DH). ADH and Al-DH are known to have a broad substrate specificity. Hence, it is possible that wine lactic acid bacteria may be able to degrade other volatile aldehydes that are known to contribute to herbaceousness in wines. Hexanal, methional, 2-methylbutanal, 3-methylbutanal, 2-methylpropanal, E-2-nonenal and phenyl-acetaldehyde are aldehydes and powerful herbaceous aroma compounds with odour thresholds between 0.5 and 16 µg/l. The odour thresholds of their corresponding alcohols are 100 to 14’000 times higher. Thus, chemical reduction of these aldehydes to the corresponding alcohols by wine lactic acid bacteria may lead to a reduction of herbaceous notes. Within the scope of this investigation, highly concentrated solutions of resting cells of several heterofermentative and facultative homofermentative wine lactic acid bacteria of the genera Oenococcus and Lactobacillus were tested for their ability to degrade these volatile aldehydes. A careful incubation and sample-taking protocol was applied in order to prevent sample evaporation. The analysis of volatile aldehydes was performed by liquid-liquid micro-extraction followed by GC-MS analysis. It could be demonstrated that all bacteria were able to degrade all volatile aldehydes efficiently. Within 50 minutes, an average of 95% of the initial aldehyde concentration was degraded with minima and maxima of 63 and 100%, respectively. The results suggest that wine lactic acid bacteria may be able to degrade volatile aldehydes during malolactic fermentation thus reducing their sensory impact and increasing sensory perception of compounds with fruity character.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Alexandra Le Boursier, Marilyn Cléroux, Tatevik Gabrielyan

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).