Macrowine 2021
IVES 9 IVES Conference Series 9 Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Abstract

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines. Recently, an innovative fermentation system based on FT-NIR and modern process technology was developed by our group, allowing fully automated alcoholic fermentations. The system provides accurate real-time information about key-fermentation parameters including glucose, fructose, and ethanol concentrations throughout fermentations. This allows carrying out fed-batch fermentations at constant and low sugar concentrations thus reducing the hyperosmotic stress response of S. cerevisiae. In this research project, the automated fed-batch technique was compared to the traditional batch method and applied to the vinification of a white Chasselas (Gutedel) grape must under practical winery conditions. A research grade FT-NIR spectrophotometer with an InGaAs detector and an external transflectance probe was used providing non-destructive and non-diffusion limited in-line measurement of sugars. The population dynamics of Saccharomyces cerevisiae and apiculate yeast were followed throughout the fermentations, and samples were also analyzed for organic acids, glycerol, primary amino acids, ammonia, and aldehydes. The final wines were subjected to discrimination (2/5) and descriptive sensory (free sorting) analyses by a trained expert panel. The fed-batch technique allowed drastically reducing the titer (1-2 orders of magnitude) and impact of apiculate yeast. This lead to significantly different wines that were rated as being free of defects and fruitier by the trained panel. The kinetics of several key-wine compounds also differed considerably. Wine produced with the fed-batch technique contained no acetic acid and significantly reduced acetaldehyde levels. The research demonstrates the potential for the application of the fed-batch technique for high gravity musts, but also for musts with a high microbiological load. The drastic reduction of acetic acid concentrations offers a biological alternative to the membrane technology based reduction of acetic acid in musts and wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Arnaud Pernet, Charles Frohmann, Danielle Widmer, Jean-Pascal Bourgeois, Julien Richard, Olivier Vorlet

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.