Macrowine 2021
IVES 9 IVES Conference Series 9 Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Abstract

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines. Recently, an innovative fermentation system based on FT-NIR and modern process technology was developed by our group, allowing fully automated alcoholic fermentations. The system provides accurate real-time information about key-fermentation parameters including glucose, fructose, and ethanol concentrations throughout fermentations. This allows carrying out fed-batch fermentations at constant and low sugar concentrations thus reducing the hyperosmotic stress response of S. cerevisiae. In this research project, the automated fed-batch technique was compared to the traditional batch method and applied to the vinification of a white Chasselas (Gutedel) grape must under practical winery conditions. A research grade FT-NIR spectrophotometer with an InGaAs detector and an external transflectance probe was used providing non-destructive and non-diffusion limited in-line measurement of sugars. The population dynamics of Saccharomyces cerevisiae and apiculate yeast were followed throughout the fermentations, and samples were also analyzed for organic acids, glycerol, primary amino acids, ammonia, and aldehydes. The final wines were subjected to discrimination (2/5) and descriptive sensory (free sorting) analyses by a trained expert panel. The fed-batch technique allowed drastically reducing the titer (1-2 orders of magnitude) and impact of apiculate yeast. This lead to significantly different wines that were rated as being free of defects and fruitier by the trained panel. The kinetics of several key-wine compounds also differed considerably. Wine produced with the fed-batch technique contained no acetic acid and significantly reduced acetaldehyde levels. The research demonstrates the potential for the application of the fed-batch technique for high gravity musts, but also for musts with a high microbiological load. The drastic reduction of acetic acid concentrations offers a biological alternative to the membrane technology based reduction of acetic acid in musts and wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Arnaud Pernet, Charles Frohmann, Danielle Widmer, Jean-Pascal Bourgeois, Julien Richard, Olivier Vorlet

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.