Macrowine 2021
IVES 9 IVES Conference Series 9 Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Abstract

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines. Recently, an innovative fermentation system based on FT-NIR and modern process technology was developed by our group, allowing fully automated alcoholic fermentations. The system provides accurate real-time information about key-fermentation parameters including glucose, fructose, and ethanol concentrations throughout fermentations. This allows carrying out fed-batch fermentations at constant and low sugar concentrations thus reducing the hyperosmotic stress response of S. cerevisiae. In this research project, the automated fed-batch technique was compared to the traditional batch method and applied to the vinification of a white Chasselas (Gutedel) grape must under practical winery conditions. A research grade FT-NIR spectrophotometer with an InGaAs detector and an external transflectance probe was used providing non-destructive and non-diffusion limited in-line measurement of sugars. The population dynamics of Saccharomyces cerevisiae and apiculate yeast were followed throughout the fermentations, and samples were also analyzed for organic acids, glycerol, primary amino acids, ammonia, and aldehydes. The final wines were subjected to discrimination (2/5) and descriptive sensory (free sorting) analyses by a trained expert panel. The fed-batch technique allowed drastically reducing the titer (1-2 orders of magnitude) and impact of apiculate yeast. This lead to significantly different wines that were rated as being free of defects and fruitier by the trained panel. The kinetics of several key-wine compounds also differed considerably. Wine produced with the fed-batch technique contained no acetic acid and significantly reduced acetaldehyde levels. The research demonstrates the potential for the application of the fed-batch technique for high gravity musts, but also for musts with a high microbiological load. The drastic reduction of acetic acid concentrations offers a biological alternative to the membrane technology based reduction of acetic acid in musts and wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Arnaud Pernet, Charles Frohmann, Danielle Widmer, Jean-Pascal Bourgeois, Julien Richard, Olivier Vorlet

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.