Macrowine 2021
IVES 9 IVES Conference Series 9 Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Abstract

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines. Recently, an innovative fermentation system based on FT-NIR and modern process technology was developed by our group, allowing fully automated alcoholic fermentations. The system provides accurate real-time information about key-fermentation parameters including glucose, fructose, and ethanol concentrations throughout fermentations. This allows carrying out fed-batch fermentations at constant and low sugar concentrations thus reducing the hyperosmotic stress response of S. cerevisiae. In this research project, the automated fed-batch technique was compared to the traditional batch method and applied to the vinification of a white Chasselas (Gutedel) grape must under practical winery conditions. A research grade FT-NIR spectrophotometer with an InGaAs detector and an external transflectance probe was used providing non-destructive and non-diffusion limited in-line measurement of sugars. The population dynamics of Saccharomyces cerevisiae and apiculate yeast were followed throughout the fermentations, and samples were also analyzed for organic acids, glycerol, primary amino acids, ammonia, and aldehydes. The final wines were subjected to discrimination (2/5) and descriptive sensory (free sorting) analyses by a trained expert panel. The fed-batch technique allowed drastically reducing the titer (1-2 orders of magnitude) and impact of apiculate yeast. This lead to significantly different wines that were rated as being free of defects and fruitier by the trained panel. The kinetics of several key-wine compounds also differed considerably. Wine produced with the fed-batch technique contained no acetic acid and significantly reduced acetaldehyde levels. The research demonstrates the potential for the application of the fed-batch technique for high gravity musts, but also for musts with a high microbiological load. The drastic reduction of acetic acid concentrations offers a biological alternative to the membrane technology based reduction of acetic acid in musts and wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ramon Mira de Orduna*, Arnaud Pernet, Charles Frohmann, Danielle Widmer, Jean-Pascal Bourgeois, Julien Richard, Olivier Vorlet

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.