Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Abstract

There is growing evidence that non-Saccharomyces yeasts can be utilized to enhance wine aroma although little research has been done on most non-Saccharomyces species. This study was designed to genetically and phenotypically characterize two local South African non-Saccharomyces species, Kazachstania aerobia and Wickerhamomyces anomalus, in addition to determining their fermentation potential and volatile profiles in synthetic grape must. Genetic differences between isolates were investigated using the RAPD method and phenotypic heterogeneity was determined using plate spotting. Isolates were assessed for heat, alcohol, saline, osmotic and oxidative stress tolerance for phenotypic strain characterization. Eight K. aerobia and thirteen W. anomalus isolates were used to ferment synthetic grape must. After characterization three K. aerobia strains and two W. anomalus strains were then selected for the co-culture fermentations with S. cerevisiae VIN13 and EC1118. Fermentations were done by inoculating yeast simultaneously as well as sequentially, 48 hours apart. Single culture fermentations were used as controls. Aroma compounds in the synthetic wine were quantified using GC-FID. RAPD analysis classified W. anomalus isolates into four distinct strains in accordance to place of origin. Phenotypic variations were also evident in the proposed strains’ resistance to oxidative, saline and osmotic stresses compared to VIN13. Interestingly, there were phenotypic differences observed within the same strain groupings. The K. aerobia isolates showed no marked genetic differences, but with slight variations in stress response. Overall, the CBS strain had a higher growth performance than the other strains with K. aerobia Y965 showing the least growth. In co-inoculation experiments of VIN13 and K. aerobia, the latter persisted until day 9 when VIN13 was introduced on day 2 and until day 7 when VIN13 was introduced on day 0 regardless of isolate’s phenotype. When fermenting with EC1118, W. anomalus had higher cell densities compared to when fermented with VIN13. In sequential fermentations W. anomalus survived until day 9 (when fermenting with strain Y934-C) and day 7 (when fermenting with strain LO632). When inoculating simultaneously with both strains of S. cerevisiae, W. anomalus was detected in the must until day five. Kazachstania aerobia and W. anomalus gives a unique aroma profile to wines. Although as single cultures these yeast do not ferment wines to dryness, they are capable of conferring favourable wine aroma when in association S. cerevisiae strains with no risk of sluggish fermentation. Inoculating S. cerevisiae sequentially to the non-Saccharomyces yeast allows sufficient time for the non-Saccharomyces to impart valuable aroma compounds. This study provides a basis for further work on wine quality improvement through exploitation of non-Saccharomyces yeasts.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Judy Lombard*, Florian Bauer, Hannibal Musarurwa, Sandra du Toit

*IWBT

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).