Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Abstract

There is growing evidence that non-Saccharomyces yeasts can be utilized to enhance wine aroma although little research has been done on most non-Saccharomyces species. This study was designed to genetically and phenotypically characterize two local South African non-Saccharomyces species, Kazachstania aerobia and Wickerhamomyces anomalus, in addition to determining their fermentation potential and volatile profiles in synthetic grape must. Genetic differences between isolates were investigated using the RAPD method and phenotypic heterogeneity was determined using plate spotting. Isolates were assessed for heat, alcohol, saline, osmotic and oxidative stress tolerance for phenotypic strain characterization. Eight K. aerobia and thirteen W. anomalus isolates were used to ferment synthetic grape must. After characterization three K. aerobia strains and two W. anomalus strains were then selected for the co-culture fermentations with S. cerevisiae VIN13 and EC1118. Fermentations were done by inoculating yeast simultaneously as well as sequentially, 48 hours apart. Single culture fermentations were used as controls. Aroma compounds in the synthetic wine were quantified using GC-FID. RAPD analysis classified W. anomalus isolates into four distinct strains in accordance to place of origin. Phenotypic variations were also evident in the proposed strains’ resistance to oxidative, saline and osmotic stresses compared to VIN13. Interestingly, there were phenotypic differences observed within the same strain groupings. The K. aerobia isolates showed no marked genetic differences, but with slight variations in stress response. Overall, the CBS strain had a higher growth performance than the other strains with K. aerobia Y965 showing the least growth. In co-inoculation experiments of VIN13 and K. aerobia, the latter persisted until day 9 when VIN13 was introduced on day 2 and until day 7 when VIN13 was introduced on day 0 regardless of isolate’s phenotype. When fermenting with EC1118, W. anomalus had higher cell densities compared to when fermented with VIN13. In sequential fermentations W. anomalus survived until day 9 (when fermenting with strain Y934-C) and day 7 (when fermenting with strain LO632). When inoculating simultaneously with both strains of S. cerevisiae, W. anomalus was detected in the must until day five. Kazachstania aerobia and W. anomalus gives a unique aroma profile to wines. Although as single cultures these yeast do not ferment wines to dryness, they are capable of conferring favourable wine aroma when in association S. cerevisiae strains with no risk of sluggish fermentation. Inoculating S. cerevisiae sequentially to the non-Saccharomyces yeast allows sufficient time for the non-Saccharomyces to impart valuable aroma compounds. This study provides a basis for further work on wine quality improvement through exploitation of non-Saccharomyces yeasts.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Judy Lombard*, Florian Bauer, Hannibal Musarurwa, Sandra du Toit

*IWBT

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.