Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Abstract

There is growing evidence that non-Saccharomyces yeasts can be utilized to enhance wine aroma although little research has been done on most non-Saccharomyces species. This study was designed to genetically and phenotypically characterize two local South African non-Saccharomyces species, Kazachstania aerobia and Wickerhamomyces anomalus, in addition to determining their fermentation potential and volatile profiles in synthetic grape must. Genetic differences between isolates were investigated using the RAPD method and phenotypic heterogeneity was determined using plate spotting. Isolates were assessed for heat, alcohol, saline, osmotic and oxidative stress tolerance for phenotypic strain characterization. Eight K. aerobia and thirteen W. anomalus isolates were used to ferment synthetic grape must. After characterization three K. aerobia strains and two W. anomalus strains were then selected for the co-culture fermentations with S. cerevisiae VIN13 and EC1118. Fermentations were done by inoculating yeast simultaneously as well as sequentially, 48 hours apart. Single culture fermentations were used as controls. Aroma compounds in the synthetic wine were quantified using GC-FID. RAPD analysis classified W. anomalus isolates into four distinct strains in accordance to place of origin. Phenotypic variations were also evident in the proposed strains’ resistance to oxidative, saline and osmotic stresses compared to VIN13. Interestingly, there were phenotypic differences observed within the same strain groupings. The K. aerobia isolates showed no marked genetic differences, but with slight variations in stress response. Overall, the CBS strain had a higher growth performance than the other strains with K. aerobia Y965 showing the least growth. In co-inoculation experiments of VIN13 and K. aerobia, the latter persisted until day 9 when VIN13 was introduced on day 2 and until day 7 when VIN13 was introduced on day 0 regardless of isolate’s phenotype. When fermenting with EC1118, W. anomalus had higher cell densities compared to when fermented with VIN13. In sequential fermentations W. anomalus survived until day 9 (when fermenting with strain Y934-C) and day 7 (when fermenting with strain LO632). When inoculating simultaneously with both strains of S. cerevisiae, W. anomalus was detected in the must until day five. Kazachstania aerobia and W. anomalus gives a unique aroma profile to wines. Although as single cultures these yeast do not ferment wines to dryness, they are capable of conferring favourable wine aroma when in association S. cerevisiae strains with no risk of sluggish fermentation. Inoculating S. cerevisiae sequentially to the non-Saccharomyces yeast allows sufficient time for the non-Saccharomyces to impart valuable aroma compounds. This study provides a basis for further work on wine quality improvement through exploitation of non-Saccharomyces yeasts.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Judy Lombard*, Florian Bauer, Hannibal Musarurwa, Sandra du Toit

*IWBT

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.