Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

Abstract

There is growing evidence that non-Saccharomyces yeasts can be utilized to enhance wine aroma although little research has been done on most non-Saccharomyces species. This study was designed to genetically and phenotypically characterize two local South African non-Saccharomyces species, Kazachstania aerobia and Wickerhamomyces anomalus, in addition to determining their fermentation potential and volatile profiles in synthetic grape must. Genetic differences between isolates were investigated using the RAPD method and phenotypic heterogeneity was determined using plate spotting. Isolates were assessed for heat, alcohol, saline, osmotic and oxidative stress tolerance for phenotypic strain characterization. Eight K. aerobia and thirteen W. anomalus isolates were used to ferment synthetic grape must. After characterization three K. aerobia strains and two W. anomalus strains were then selected for the co-culture fermentations with S. cerevisiae VIN13 and EC1118. Fermentations were done by inoculating yeast simultaneously as well as sequentially, 48 hours apart. Single culture fermentations were used as controls. Aroma compounds in the synthetic wine were quantified using GC-FID. RAPD analysis classified W. anomalus isolates into four distinct strains in accordance to place of origin. Phenotypic variations were also evident in the proposed strains’ resistance to oxidative, saline and osmotic stresses compared to VIN13. Interestingly, there were phenotypic differences observed within the same strain groupings. The K. aerobia isolates showed no marked genetic differences, but with slight variations in stress response. Overall, the CBS strain had a higher growth performance than the other strains with K. aerobia Y965 showing the least growth. In co-inoculation experiments of VIN13 and K. aerobia, the latter persisted until day 9 when VIN13 was introduced on day 2 and until day 7 when VIN13 was introduced on day 0 regardless of isolate’s phenotype. When fermenting with EC1118, W. anomalus had higher cell densities compared to when fermented with VIN13. In sequential fermentations W. anomalus survived until day 9 (when fermenting with strain Y934-C) and day 7 (when fermenting with strain LO632). When inoculating simultaneously with both strains of S. cerevisiae, W. anomalus was detected in the must until day five. Kazachstania aerobia and W. anomalus gives a unique aroma profile to wines. Although as single cultures these yeast do not ferment wines to dryness, they are capable of conferring favourable wine aroma when in association S. cerevisiae strains with no risk of sluggish fermentation. Inoculating S. cerevisiae sequentially to the non-Saccharomyces yeast allows sufficient time for the non-Saccharomyces to impart valuable aroma compounds. This study provides a basis for further work on wine quality improvement through exploitation of non-Saccharomyces yeasts.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Judy Lombard*, Florian Bauer, Hannibal Musarurwa, Sandra du Toit

*IWBT

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.