Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Abstract

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles (references) are used for the evaluation of similarities and dissimilarities between samples. Panelists are presented with “free-moving” products to arrange around the poles, according to similarities and dissimilarities, to create a 2D product map. Additionally, the judges give a description of the samples, generating a short list of attributes. Our approach to testing this method was to first establish the poles using PM, then test the model using PPM with samples that were either known (used in the PM session and that contributed to the choice of poles) or unknown. The sample set consisted of 18 commercial Chenin blanc wines, vintages 2013 and 2014, from the three representative styles, chosen according to the tasting notes description. Four PPM experiments were performed. The poles were kept constant among the PPM experiments, while different combinations of “free-moving” wines were evaluated to test the consistency of product groupings. In all tasks sensory descriptors were generated. For each session 15 judges were recruited. Each judge repeated the exercise after a 15 minute break. For PM the sample set consisted of 12 samples (9 wines, 3 of them duplicates). For PPM, the sample sets also had 12 samples, with one of the poles and one other sample duplicated. The PPM sessions were organized as follows: PPM1 same samples as PM, PPM2 and PPM3 half known and half unknown samples, and PPM4 only unknown samples. The data generated was evaluated statistically by means of multiple factor analysis (MFA). Multiple factor analysis (MFA) on the individual tasks showed in the PM and all four PPM tasks, the RRW group separated most clearly from other wines and blind duplicates of this style grouped well together. The FF and RRU styles grouped less consistently from one task to another and blind duplicates were not grouped as closely to one another. MFA results comparing all four PPM experiments showed good repeatability in grouping of wines among the separate sessions, especially for wooded wines. New rapid methods provide significant cost benefits for the wine industry and researchers. PPM may be a useful tool for researchers to apply in the analysis of large sample sets of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Christine Wilson, Jeanne Brand

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.