Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Abstract

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles (references) are used for the evaluation of similarities and dissimilarities between samples. Panelists are presented with “free-moving” products to arrange around the poles, according to similarities and dissimilarities, to create a 2D product map. Additionally, the judges give a description of the samples, generating a short list of attributes. Our approach to testing this method was to first establish the poles using PM, then test the model using PPM with samples that were either known (used in the PM session and that contributed to the choice of poles) or unknown. The sample set consisted of 18 commercial Chenin blanc wines, vintages 2013 and 2014, from the three representative styles, chosen according to the tasting notes description. Four PPM experiments were performed. The poles were kept constant among the PPM experiments, while different combinations of “free-moving” wines were evaluated to test the consistency of product groupings. In all tasks sensory descriptors were generated. For each session 15 judges were recruited. Each judge repeated the exercise after a 15 minute break. For PM the sample set consisted of 12 samples (9 wines, 3 of them duplicates). For PPM, the sample sets also had 12 samples, with one of the poles and one other sample duplicated. The PPM sessions were organized as follows: PPM1 same samples as PM, PPM2 and PPM3 half known and half unknown samples, and PPM4 only unknown samples. The data generated was evaluated statistically by means of multiple factor analysis (MFA). Multiple factor analysis (MFA) on the individual tasks showed in the PM and all four PPM tasks, the RRW group separated most clearly from other wines and blind duplicates of this style grouped well together. The FF and RRU styles grouped less consistently from one task to another and blind duplicates were not grouped as closely to one another. MFA results comparing all four PPM experiments showed good repeatability in grouping of wines among the separate sessions, especially for wooded wines. New rapid methods provide significant cost benefits for the wine industry and researchers. PPM may be a useful tool for researchers to apply in the analysis of large sample sets of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Christine Wilson, Jeanne Brand

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.