Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of peptide fraction from white wines

Analysis of peptide fraction from white wines

Abstract

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)? First, after splitting reference wines by means of tangential ultrafiltration we got 3 different fractions: proteins above 10 kDa, peptides between 3 and 10 kDa and small peptides and free amino acids below 3 kDa. The amount of total nitrogen for each fraction was quantified by method of Kjedhal. We confirm that peptides represent the largest fraction of the nitrogen compounds in white wine. We expanded the range of molecular weight and studied the peptide fraction between 1 kDa and 10 kDa. This fraction of interest obtained by tangential ultrafiltration was diafiltrated against water and was concentrated by lyophilization. After, extracts from this fraction was separated by gel exclusion chromatography with the superdex 30 specific for peptides. Each fraction was read by absorbance at the 275 nm and then specifically detected by fluorescence with o-phtalaldehyde (OPA) to differentiate peptides from other molecules like polyphenols which are also detected at this wavelength. This isolation strategy was subsequently applied to white wines more or less bitter to investigate a potential relation between the peptides and the bitter taste. We obtained different peptide profiles between the most and least bitter wine for peptides corresponding to a high molecular weight. Every white wines studied here have similar peptide profiles made of two pools of different peptides. For the bitterest wine, the first pool corresponding to the higher molecular weight is greater. Thus, we may have revealed a relation between a class of peptides and the bitterness of these white wines.

REFERENCE LIST • Bartolomé, B., Moreno-Arribas, V., Pueyo, E., Polo, M.C. (1997) – On-line HPLCL photodiode array detection and derivatization for partial identification of small peptides from white wine. J. Agric. Food Chem. 45, 3374-3381. • Desportes, C., Charpentier, M.,Duteurtre, B. Maujean, A., Duchiron, F. (2000) – Liquid chromatographic fractionation of small peptides from wine. Journal of chromatography A. 893, pages 281-291. • Feuillat, M. (1974) – Contribution à l’étude des composés azotés dans les moûts de raisin et dans les vins. Thèse de Doctorat, université de Dijon. • Furtado, M.M. (1984) – Prevention of bitter taste in cheeses. Bulletin de la fédération Internationale de Laiterie. 177, 113-122.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Caty Chabalier

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.