Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of peptide fraction from white wines

Analysis of peptide fraction from white wines

Abstract

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)? First, after splitting reference wines by means of tangential ultrafiltration we got 3 different fractions: proteins above 10 kDa, peptides between 3 and 10 kDa and small peptides and free amino acids below 3 kDa. The amount of total nitrogen for each fraction was quantified by method of Kjedhal. We confirm that peptides represent the largest fraction of the nitrogen compounds in white wine. We expanded the range of molecular weight and studied the peptide fraction between 1 kDa and 10 kDa. This fraction of interest obtained by tangential ultrafiltration was diafiltrated against water and was concentrated by lyophilization. After, extracts from this fraction was separated by gel exclusion chromatography with the superdex 30 specific for peptides. Each fraction was read by absorbance at the 275 nm and then specifically detected by fluorescence with o-phtalaldehyde (OPA) to differentiate peptides from other molecules like polyphenols which are also detected at this wavelength. This isolation strategy was subsequently applied to white wines more or less bitter to investigate a potential relation between the peptides and the bitter taste. We obtained different peptide profiles between the most and least bitter wine for peptides corresponding to a high molecular weight. Every white wines studied here have similar peptide profiles made of two pools of different peptides. For the bitterest wine, the first pool corresponding to the higher molecular weight is greater. Thus, we may have revealed a relation between a class of peptides and the bitterness of these white wines.

REFERENCE LIST • Bartolomé, B., Moreno-Arribas, V., Pueyo, E., Polo, M.C. (1997) – On-line HPLCL photodiode array detection and derivatization for partial identification of small peptides from white wine. J. Agric. Food Chem. 45, 3374-3381. • Desportes, C., Charpentier, M.,Duteurtre, B. Maujean, A., Duchiron, F. (2000) – Liquid chromatographic fractionation of small peptides from wine. Journal of chromatography A. 893, pages 281-291. • Feuillat, M. (1974) – Contribution à l’étude des composés azotés dans les moûts de raisin et dans les vins. Thèse de Doctorat, université de Dijon. • Furtado, M.M. (1984) – Prevention of bitter taste in cheeses. Bulletin de la fédération Internationale de Laiterie. 177, 113-122.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Caty Chabalier

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.