Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of peptide fraction from white wines

Analysis of peptide fraction from white wines

Abstract

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)? First, after splitting reference wines by means of tangential ultrafiltration we got 3 different fractions: proteins above 10 kDa, peptides between 3 and 10 kDa and small peptides and free amino acids below 3 kDa. The amount of total nitrogen for each fraction was quantified by method of Kjedhal. We confirm that peptides represent the largest fraction of the nitrogen compounds in white wine. We expanded the range of molecular weight and studied the peptide fraction between 1 kDa and 10 kDa. This fraction of interest obtained by tangential ultrafiltration was diafiltrated against water and was concentrated by lyophilization. After, extracts from this fraction was separated by gel exclusion chromatography with the superdex 30 specific for peptides. Each fraction was read by absorbance at the 275 nm and then specifically detected by fluorescence with o-phtalaldehyde (OPA) to differentiate peptides from other molecules like polyphenols which are also detected at this wavelength. This isolation strategy was subsequently applied to white wines more or less bitter to investigate a potential relation between the peptides and the bitter taste. We obtained different peptide profiles between the most and least bitter wine for peptides corresponding to a high molecular weight. Every white wines studied here have similar peptide profiles made of two pools of different peptides. For the bitterest wine, the first pool corresponding to the higher molecular weight is greater. Thus, we may have revealed a relation between a class of peptides and the bitterness of these white wines.

REFERENCE LIST • Bartolomé, B., Moreno-Arribas, V., Pueyo, E., Polo, M.C. (1997) – On-line HPLCL photodiode array detection and derivatization for partial identification of small peptides from white wine. J. Agric. Food Chem. 45, 3374-3381. • Desportes, C., Charpentier, M.,Duteurtre, B. Maujean, A., Duchiron, F. (2000) – Liquid chromatographic fractionation of small peptides from wine. Journal of chromatography A. 893, pages 281-291. • Feuillat, M. (1974) – Contribution à l’étude des composés azotés dans les moûts de raisin et dans les vins. Thèse de Doctorat, université de Dijon. • Furtado, M.M. (1984) – Prevention of bitter taste in cheeses. Bulletin de la fédération Internationale de Laiterie. 177, 113-122.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Caty Chabalier

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.