Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of peptide fraction from white wines

Analysis of peptide fraction from white wines

Abstract

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)? First, after splitting reference wines by means of tangential ultrafiltration we got 3 different fractions: proteins above 10 kDa, peptides between 3 and 10 kDa and small peptides and free amino acids below 3 kDa. The amount of total nitrogen for each fraction was quantified by method of Kjedhal. We confirm that peptides represent the largest fraction of the nitrogen compounds in white wine. We expanded the range of molecular weight and studied the peptide fraction between 1 kDa and 10 kDa. This fraction of interest obtained by tangential ultrafiltration was diafiltrated against water and was concentrated by lyophilization. After, extracts from this fraction was separated by gel exclusion chromatography with the superdex 30 specific for peptides. Each fraction was read by absorbance at the 275 nm and then specifically detected by fluorescence with o-phtalaldehyde (OPA) to differentiate peptides from other molecules like polyphenols which are also detected at this wavelength. This isolation strategy was subsequently applied to white wines more or less bitter to investigate a potential relation between the peptides and the bitter taste. We obtained different peptide profiles between the most and least bitter wine for peptides corresponding to a high molecular weight. Every white wines studied here have similar peptide profiles made of two pools of different peptides. For the bitterest wine, the first pool corresponding to the higher molecular weight is greater. Thus, we may have revealed a relation between a class of peptides and the bitterness of these white wines.

REFERENCE LIST • Bartolomé, B., Moreno-Arribas, V., Pueyo, E., Polo, M.C. (1997) – On-line HPLCL photodiode array detection and derivatization for partial identification of small peptides from white wine. J. Agric. Food Chem. 45, 3374-3381. • Desportes, C., Charpentier, M.,Duteurtre, B. Maujean, A., Duchiron, F. (2000) – Liquid chromatographic fractionation of small peptides from wine. Journal of chromatography A. 893, pages 281-291. • Feuillat, M. (1974) – Contribution à l’étude des composés azotés dans les moûts de raisin et dans les vins. Thèse de Doctorat, université de Dijon. • Furtado, M.M. (1984) – Prevention of bitter taste in cheeses. Bulletin de la fédération Internationale de Laiterie. 177, 113-122.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Caty Chabalier

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.