Macrowine 2021
IVES 9 IVES Conference Series 9 New biological tools to control and secure malolactic fermentation in high pH wines

New biological tools to control and secure malolactic fermentation in high pH wines

Abstract

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow. Wine pH is most selective, and at pH below 3.5 generally only strains of Oenococcus oeni can survive and express malolactic activity, while wines with pH above 3.5 can contain various species of Pediococcus, as well as strains of Lactobacillus. The trend toward harvesting higher maturity grapes has resulted in the processing of higher pH musts and the production of wines containing increased levels of alcohol. These conditions favor the growth of indigenous bacteria and often O. oeni does not prevail at the end of alcoholic fermentation. More Lactobacillus sp. predominate and are often responsible for spontaneous MLF (du Toit et al. 2011). Some L. plantarum strains can tolerate the high alcohol concentrations and SO2 levels normally encountered in wine. Due to their very complex and diverse metabolism a range of compositional changes can be induced, which may affect the quality of the final product positively or negatively. A recent isolate have shown most interesting results, not only for its capacity to induce MLF after direct inoculation in freeze-dried form, but also for their positive contribution to the wine aroma. Co-inoculation (inoculation of selected wine LAB 24 hours after the yeast) can ensure the early implantation and dominance of the selected strain, the early onset and completion of MLF, and can possibly prevent the appearance of the spoilage yeast and bacteria. Applying an important L. plantarum inoculum with high malolactic activity assures an immediate dominance, as well as predictable and complete MLF in short time and allows an early stabilization of the wine. Since it degrades hexose sugars by the homo-fermentative pathway, which poses no risk of acetic acid production from the residual sugars that may be present in high pH wines, it is an interesting alternative to control MLF in high pH wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sibylle Dr. Krieger-Weber*, Anthony Silvano, Magali Deleris-Bou

*Lallemand SAS

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.