Macrowine 2021
IVES 9 IVES Conference Series 9 New biological tools to control and secure malolactic fermentation in high pH wines

New biological tools to control and secure malolactic fermentation in high pH wines

Abstract

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow. Wine pH is most selective, and at pH below 3.5 generally only strains of Oenococcus oeni can survive and express malolactic activity, while wines with pH above 3.5 can contain various species of Pediococcus, as well as strains of Lactobacillus. The trend toward harvesting higher maturity grapes has resulted in the processing of higher pH musts and the production of wines containing increased levels of alcohol. These conditions favor the growth of indigenous bacteria and often O. oeni does not prevail at the end of alcoholic fermentation. More Lactobacillus sp. predominate and are often responsible for spontaneous MLF (du Toit et al. 2011). Some L. plantarum strains can tolerate the high alcohol concentrations and SO2 levels normally encountered in wine. Due to their very complex and diverse metabolism a range of compositional changes can be induced, which may affect the quality of the final product positively or negatively. A recent isolate have shown most interesting results, not only for its capacity to induce MLF after direct inoculation in freeze-dried form, but also for their positive contribution to the wine aroma. Co-inoculation (inoculation of selected wine LAB 24 hours after the yeast) can ensure the early implantation and dominance of the selected strain, the early onset and completion of MLF, and can possibly prevent the appearance of the spoilage yeast and bacteria. Applying an important L. plantarum inoculum with high malolactic activity assures an immediate dominance, as well as predictable and complete MLF in short time and allows an early stabilization of the wine. Since it degrades hexose sugars by the homo-fermentative pathway, which poses no risk of acetic acid production from the residual sugars that may be present in high pH wines, it is an interesting alternative to control MLF in high pH wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sibylle Dr. Krieger-Weber*, Anthony Silvano, Magali Deleris-Bou

*Lallemand SAS

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.