Macrowine 2021
IVES 9 IVES Conference Series 9 New biological tools to control and secure malolactic fermentation in high pH wines

New biological tools to control and secure malolactic fermentation in high pH wines

Abstract

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow. Wine pH is most selective, and at pH below 3.5 generally only strains of Oenococcus oeni can survive and express malolactic activity, while wines with pH above 3.5 can contain various species of Pediococcus, as well as strains of Lactobacillus. The trend toward harvesting higher maturity grapes has resulted in the processing of higher pH musts and the production of wines containing increased levels of alcohol. These conditions favor the growth of indigenous bacteria and often O. oeni does not prevail at the end of alcoholic fermentation. More Lactobacillus sp. predominate and are often responsible for spontaneous MLF (du Toit et al. 2011). Some L. plantarum strains can tolerate the high alcohol concentrations and SO2 levels normally encountered in wine. Due to their very complex and diverse metabolism a range of compositional changes can be induced, which may affect the quality of the final product positively or negatively. A recent isolate have shown most interesting results, not only for its capacity to induce MLF after direct inoculation in freeze-dried form, but also for their positive contribution to the wine aroma. Co-inoculation (inoculation of selected wine LAB 24 hours after the yeast) can ensure the early implantation and dominance of the selected strain, the early onset and completion of MLF, and can possibly prevent the appearance of the spoilage yeast and bacteria. Applying an important L. plantarum inoculum with high malolactic activity assures an immediate dominance, as well as predictable and complete MLF in short time and allows an early stabilization of the wine. Since it degrades hexose sugars by the homo-fermentative pathway, which poses no risk of acetic acid production from the residual sugars that may be present in high pH wines, it is an interesting alternative to control MLF in high pH wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sibylle Dr. Krieger-Weber*, Anthony Silvano, Magali Deleris-Bou

*Lallemand SAS

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).