Macrowine 2021
IVES 9 IVES Conference Series 9 New biological tools to control and secure malolactic fermentation in high pH wines

New biological tools to control and secure malolactic fermentation in high pH wines

Abstract

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow. Wine pH is most selective, and at pH below 3.5 generally only strains of Oenococcus oeni can survive and express malolactic activity, while wines with pH above 3.5 can contain various species of Pediococcus, as well as strains of Lactobacillus. The trend toward harvesting higher maturity grapes has resulted in the processing of higher pH musts and the production of wines containing increased levels of alcohol. These conditions favor the growth of indigenous bacteria and often O. oeni does not prevail at the end of alcoholic fermentation. More Lactobacillus sp. predominate and are often responsible for spontaneous MLF (du Toit et al. 2011). Some L. plantarum strains can tolerate the high alcohol concentrations and SO2 levels normally encountered in wine. Due to their very complex and diverse metabolism a range of compositional changes can be induced, which may affect the quality of the final product positively or negatively. A recent isolate have shown most interesting results, not only for its capacity to induce MLF after direct inoculation in freeze-dried form, but also for their positive contribution to the wine aroma. Co-inoculation (inoculation of selected wine LAB 24 hours after the yeast) can ensure the early implantation and dominance of the selected strain, the early onset and completion of MLF, and can possibly prevent the appearance of the spoilage yeast and bacteria. Applying an important L. plantarum inoculum with high malolactic activity assures an immediate dominance, as well as predictable and complete MLF in short time and allows an early stabilization of the wine. Since it degrades hexose sugars by the homo-fermentative pathway, which poses no risk of acetic acid production from the residual sugars that may be present in high pH wines, it is an interesting alternative to control MLF in high pH wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sibylle Dr. Krieger-Weber*, Anthony Silvano, Magali Deleris-Bou

*Lallemand SAS

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.