Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Abstract

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014). The purpose of this study was to investigate the difference in adsorption efficiency of the active substances most used by Swiss winegrowers. Furthermore, effects of concentration and competition between the different active substances in the adsorption efficiency of AVF were investigated. The concentration and competition trials were carried out using white wine without pesticides allowing to artificially spike six active substances. The investigation of the concentration effect led to the Freundlich isotherms allowing the calculation of the adsorption capacities of Fenpropidin k = 1816μg/g fiber and Fluopyram k = 556μg/g of fibre. This showed that the rate of reduction of these active substances is not related to the initial concentration, but remains stable over the tested range. The results of the competition trial indicate no interaction between different active substances present in a solution for the absorption by AVF. Indeed, it was not possible to show significant differences between the reduction rate of pesticides in a wine containing a cocktail of six active substances and wines containing only one of the active substances. Our results also confirm that the reduction rate depends on the active substance. Among the tested substances, there are three different efficiency classes: Mandipropamid, Cyprodinil and Fenpropidin with reduction rates between 80-100%, Fludioxonil and Fluopyram with rates between 50-80% and Iprovalicarb with a rate under 50%. This classification confirms the results of previous pre-industrial trials (Lempereur et al. 2014), except for Fenpropidin and Fluopyram that were never tested before. These experiments show the potential of AVF for active substances untested so far such as Fluopyram and Fenpropidin. Trials are currently under way to compare the efficiency of AVF between laboratory and pre-industrial conditions and to investigate the sensory impact on the wine, particularly the perception threshold of the AVF and their impact on the colloidal balance of the wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Michel Reynolds*, Carole Koestel, Céline Louaisil, Johannes Rösti, Magali Grinbaum, Valérie Lempereur

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].