Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Abstract

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014). The purpose of this study was to investigate the difference in adsorption efficiency of the active substances most used by Swiss winegrowers. Furthermore, effects of concentration and competition between the different active substances in the adsorption efficiency of AVF were investigated. The concentration and competition trials were carried out using white wine without pesticides allowing to artificially spike six active substances. The investigation of the concentration effect led to the Freundlich isotherms allowing the calculation of the adsorption capacities of Fenpropidin k = 1816μg/g fiber and Fluopyram k = 556μg/g of fibre. This showed that the rate of reduction of these active substances is not related to the initial concentration, but remains stable over the tested range. The results of the competition trial indicate no interaction between different active substances present in a solution for the absorption by AVF. Indeed, it was not possible to show significant differences between the reduction rate of pesticides in a wine containing a cocktail of six active substances and wines containing only one of the active substances. Our results also confirm that the reduction rate depends on the active substance. Among the tested substances, there are three different efficiency classes: Mandipropamid, Cyprodinil and Fenpropidin with reduction rates between 80-100%, Fludioxonil and Fluopyram with rates between 50-80% and Iprovalicarb with a rate under 50%. This classification confirms the results of previous pre-industrial trials (Lempereur et al. 2014), except for Fenpropidin and Fluopyram that were never tested before. These experiments show the potential of AVF for active substances untested so far such as Fluopyram and Fenpropidin. Trials are currently under way to compare the efficiency of AVF between laboratory and pre-industrial conditions and to investigate the sensory impact on the wine, particularly the perception threshold of the AVF and their impact on the colloidal balance of the wine.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Michel Reynolds*, Carole Koestel, Céline Louaisil, Johannes Rösti, Magali Grinbaum, Valérie Lempereur

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.