Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Abstract

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines. The Moscato nero d’Acqui grapes contain an interesting profile of secondary metabolites. The content of anthocyanins is low (314 mg/kg) but their profile is characterized mainly by trisubstituted anthocyanins, especially malvidin and its derivatives (about 50%). The aromatic composition is essentially characterized by terpenes: geraniol and nerol are the monoterpenes showing the highest contents, both in free and glycosidic forms. On the basis of the grape chemical characteristics, three types of special wines were produced and analyzed: fortified (from fresh grapes), sfursat (dry wine) and passito (sweet wine). With this aim, the grapes were subjected to a withering process under the same controlled conditions (16-18 °C, 55-70 RH%, 0.6 m/s air speed) until 27 and 36 °Brix for sfursat and passito wines, respectively. To some extent, the dehydration process affects the concentration of anthocyanins, total flavonoids, proanthocyanidins and flavanols reactive to vanillin in the skins, as well as aroma compounds in the glycosidic form. This effect may be due to the sum of the two opposite effects of concentration and oxidation of these secondary metabolites during the dehydration process. The phenolic content of the wine reflects those found in the grapes: sfursat and passito wines present higher contents of anthocyanin, total flavonoids, proanthocyanidins and flavanols reactive to vanillin than those of the fortified wine that is produced from fresh grapes. Therefore, the determination of the anthocyanin concentration shows the effectiveness of grape drying technique in bringing a greater quantity of red color substances and in decreasing the presence of orange notes. Both free and glycosidic aromatic components of the three wines are characterized mostly by terpenes. Wine concentrations of linalool and citronellol in free forms increase with respect to the quantities found in the grapes, however their respective concentrations of glycosidic forms showed a decrease. The aroma of the passito and the sfursat wines is characterized by a higher concentration of citronellol and 2-phenyl-ethanol in free form, which may give notes of rose and citrus. On the basis of the results obtained so far, this variety has a clear potential for the production of special wines, in terms of final hue, color intensity and aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carolina Ossola, Fabrizio Torchio, Francesca Mosso, Luca Rolle, Simone Giacosa, Susana Río Segade, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.