Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

Abstract

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines. The Moscato nero d’Acqui grapes contain an interesting profile of secondary metabolites. The content of anthocyanins is low (314 mg/kg) but their profile is characterized mainly by trisubstituted anthocyanins, especially malvidin and its derivatives (about 50%). The aromatic composition is essentially characterized by terpenes: geraniol and nerol are the monoterpenes showing the highest contents, both in free and glycosidic forms. On the basis of the grape chemical characteristics, three types of special wines were produced and analyzed: fortified (from fresh grapes), sfursat (dry wine) and passito (sweet wine). With this aim, the grapes were subjected to a withering process under the same controlled conditions (16-18 °C, 55-70 RH%, 0.6 m/s air speed) until 27 and 36 °Brix for sfursat and passito wines, respectively. To some extent, the dehydration process affects the concentration of anthocyanins, total flavonoids, proanthocyanidins and flavanols reactive to vanillin in the skins, as well as aroma compounds in the glycosidic form. This effect may be due to the sum of the two opposite effects of concentration and oxidation of these secondary metabolites during the dehydration process. The phenolic content of the wine reflects those found in the grapes: sfursat and passito wines present higher contents of anthocyanin, total flavonoids, proanthocyanidins and flavanols reactive to vanillin than those of the fortified wine that is produced from fresh grapes. Therefore, the determination of the anthocyanin concentration shows the effectiveness of grape drying technique in bringing a greater quantity of red color substances and in decreasing the presence of orange notes. Both free and glycosidic aromatic components of the three wines are characterized mostly by terpenes. Wine concentrations of linalool and citronellol in free forms increase with respect to the quantities found in the grapes, however their respective concentrations of glycosidic forms showed a decrease. The aroma of the passito and the sfursat wines is characterized by a higher concentration of citronellol and 2-phenyl-ethanol in free form, which may give notes of rose and citrus. On the basis of the results obtained so far, this variety has a clear potential for the production of special wines, in terms of final hue, color intensity and aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Carolina Ossola, Fabrizio Torchio, Francesca Mosso, Luca Rolle, Simone Giacosa, Susana Río Segade, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.