Macrowine 2021
IVES 9 IVES Conference Series 9 New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Abstract

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat. The assignments were based on their UV-vis and MSn spectral data. Firstly, the MS2 fragmentation pattern of each tentatively identified flavonol glycoside derivative showed a main signal attributable to the expected flavonol aglycone, together with a weak signal corresponding to the intermediate loss of the acyl moiety. The structures of the flavonol aglycones were confirmed by their respective MS3 experiments that matched with those obtained from authentic standards of the three aglycones. In addition, the DAD on-line UV-vis spectra of the suggested flavonol-3-O-(p-coumaroyl)-glucosides closely matched the sum of the respective spectra of the flavonol-3-O-glucoside and that of p-coumaric acid. Interestingly, the presence of these new flavonol derivatives was limited to the minority flavonols. Being acylation a final step in the flavonoid synthesis, our findings suggest a very high specificity of the acyltransferases implied for the flavonol glycoside substrate that in this case would be related to the presence of methoxyl groups in the B ring of the flavonol. The fact that these compounds have been found in Tannat, a Vitis vinifera with scarce cultivation around the world, may indicate that the implied acyltransferases could be little spread among grape varieties. Nevertheless it could be associated to other factors like growth environmental conditions, or to the sensitivity of the analytical technique employed, or others factors, which should be further considered and studied. These results give evidences of new flavonol derivatives in grapes and wines, and expose a case of substrate specificity of the enzymes implied in their synthesis.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Isidro Hermosín-Gutíerrez*, Diego Piccardo, Gustavo González Neves, Guzmán Favre, Sergio Gómez-Alonso

*Universidad de Castilla-La Mancha

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.