Macrowine 2021
IVES 9 IVES Conference Series 9 New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Abstract

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat. The assignments were based on their UV-vis and MSn spectral data. Firstly, the MS2 fragmentation pattern of each tentatively identified flavonol glycoside derivative showed a main signal attributable to the expected flavonol aglycone, together with a weak signal corresponding to the intermediate loss of the acyl moiety. The structures of the flavonol aglycones were confirmed by their respective MS3 experiments that matched with those obtained from authentic standards of the three aglycones. In addition, the DAD on-line UV-vis spectra of the suggested flavonol-3-O-(p-coumaroyl)-glucosides closely matched the sum of the respective spectra of the flavonol-3-O-glucoside and that of p-coumaric acid. Interestingly, the presence of these new flavonol derivatives was limited to the minority flavonols. Being acylation a final step in the flavonoid synthesis, our findings suggest a very high specificity of the acyltransferases implied for the flavonol glycoside substrate that in this case would be related to the presence of methoxyl groups in the B ring of the flavonol. The fact that these compounds have been found in Tannat, a Vitis vinifera with scarce cultivation around the world, may indicate that the implied acyltransferases could be little spread among grape varieties. Nevertheless it could be associated to other factors like growth environmental conditions, or to the sensitivity of the analytical technique employed, or others factors, which should be further considered and studied. These results give evidences of new flavonol derivatives in grapes and wines, and expose a case of substrate specificity of the enzymes implied in their synthesis.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Isidro Hermosín-Gutíerrez*, Diego Piccardo, Gustavo González Neves, Guzmán Favre, Sergio Gómez-Alonso

*Universidad de Castilla-La Mancha

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.