Macrowine 2021
IVES 9 IVES Conference Series 9 Correlations between sensory characteristics and colloidal content in dry white wines

Correlations between sensory characteristics and colloidal content in dry white wines

Abstract

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential. In any case, must clarification has an impact on the juice content and subsequently on the wine composition and sensory attributes. However, correlations between the macromolecular content of dry white wines and their sensory perceptions were never reported so far. In order to investigate the links existing between the chemical composition of dry white wines and their sensory characteristics, Chardonnay wines from Burgundy, obtained from musts with three levels of clarification (Low, Medium and High) and for two vintages (2009 and 2010) were analyzed. Three bottles per turbidity level were opened in 2015 in order to evaluate their organoleptic characteristics by a trained sensory panel composed of 31 students from the Institut Universitaire de la Vigne et du Vin at Dijon, France. Reductive and/or oxydative states of each wines had to be ranked on a scale of 0 to +5. Results were statistically analyzed and correlated to both a target analysis of fluorescent wine compounds including polyphenols and proteins, and an unsupervised analysis by Excitation Emission Matrices of Fluorescence (EEMF). Putative known and unknown molecular markers for the distinct redox states could be proposed, as a function of vintages.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Christian Coelho*, Jordi Ballester, Maria Nikolantonaki, Mathilde Magne, Régis Gougeon

*Université de Bourgogne, IUVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.