Macrowine 2021
IVES 9 IVES Conference Series 9 Correlations between sensory characteristics and colloidal content in dry white wines

Correlations between sensory characteristics and colloidal content in dry white wines

Abstract

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential. In any case, must clarification has an impact on the juice content and subsequently on the wine composition and sensory attributes. However, correlations between the macromolecular content of dry white wines and their sensory perceptions were never reported so far. In order to investigate the links existing between the chemical composition of dry white wines and their sensory characteristics, Chardonnay wines from Burgundy, obtained from musts with three levels of clarification (Low, Medium and High) and for two vintages (2009 and 2010) were analyzed. Three bottles per turbidity level were opened in 2015 in order to evaluate their organoleptic characteristics by a trained sensory panel composed of 31 students from the Institut Universitaire de la Vigne et du Vin at Dijon, France. Reductive and/or oxydative states of each wines had to be ranked on a scale of 0 to +5. Results were statistically analyzed and correlated to both a target analysis of fluorescent wine compounds including polyphenols and proteins, and an unsupervised analysis by Excitation Emission Matrices of Fluorescence (EEMF). Putative known and unknown molecular markers for the distinct redox states could be proposed, as a function of vintages.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Christian Coelho*, Jordi Ballester, Maria Nikolantonaki, Mathilde Magne, Régis Gougeon

*Université de Bourgogne, IUVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.